1. Computational and Systems Biology
  2. Neuroscience
Download icon

Attention stabilizes the shared gain of V4 populations

  1. Neil C Rabinowitz
  2. Robbe L Goris
  3. Marlene Cohen
  4. Eero Simoncelli  Is a corresponding author
  1. Howard Hughes Medical Institute, New York University, United States
  2. University of Pittsburgh, United States
Research Article
  • Cited 76
  • Views 2,402
  • Annotations
Cite this article as: eLife 2015;4:e08998 doi: 10.7554/eLife.08998

Abstract

Responses of sensory neurons represent stimulus information, but are also influenced by internal state. For example, when monkeys direct their attention to a visual stimulus, the response gain of specific subsets of neurons in visual cortex changes. Here, we develop a functional model of population activity to investigate the structure of this effect. We fit the model to the spiking activity of bilateral neural populations in area V4, recorded while the animal performed a stimulus discrimination task under spatial attention. The model reveals four separate time-varying shared modulatory signals, the dominant two of which each target task-relevant neurons in one hemisphere. In attention-directed conditions, the associated shared modulatory signal decreases in variance. This finding provides an interpretable and parsimonious explanation for previous observations that attention reduces variability and noise correlations of sensory neurons. Finally, the recovered modulatory signals reflect previous reward, and are predictive of choice behavior.

Article and author information

Author details

  1. Neil C Rabinowitz

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robbe L Goris

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlene Cohen

    Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eero Simoncelli

    Center for Neural Science, Howard Hughes Medical Institute, New York University, New York, United States
    For correspondence
    eero.simoncelli@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Matteo Carandini, University College London, United Kingdom

Publication history

  1. Received: May 26, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: November 2, 2015 (version 1)
  4. Accepted Manuscript updated: December 24, 2015 (version 2)
  5. Version of Record published: February 5, 2016 (version 3)

Copyright

© 2015, Rabinowitz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,402
    Page views
  • 723
    Downloads
  • 76
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Lucile Megret et al.
    Research Article

    Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington’s disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.

    1. Cell Biology
    2. Computational and Systems Biology
    Taraneh Zarin et al.
    Research Advance

    In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.