Abstract

Most perceptual decisions require comparisons between current input and an internal template. Classic studies propose that templates are encoded in sustained activity of sensory neurons. However, stimulus encoding is itself dynamic, tracing a complex trajectory through activity space. Which part of this trajectory is pre-activated to reflect the template? Here we recorded magneto- and electroencephalography during a visual target-detection task, and used pattern analyses to decode template, stimulus, and decision-variable representation. Our findings ran counter to the dominant model of sustained pre-activation. Instead, template information emerged transiently around stimulus onset and quickly subsided. Cross-generalization between stimulus and template coding, indicating a shared neural representation, occurred only briefly. Our results are compatible with the proposal that template representation relies on a matched filter, transforming input into task-appropriate output. This proposal was consistent with a signed difference response at the perceptual decision stage, which can be explained by a simple neural model.

Article and author information

Author details

  1. Nicholas Edward Myers

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    For correspondence
    nicholas.myers@ohba.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Gustavo Rohenkohl

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentin Wyart

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark W Woolrich

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Christina Nobre

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark G Stokes

    Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Ethical approval for methods and procedures was obtained from the Central University Research Ethics Committee of the University of Oxford. All participants provided written, informed consent.

Copyright

© 2015, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,301
    views
  • 821
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas Edward Myers
  2. Gustavo Rohenkohl
  3. Valentin Wyart
  4. Mark W Woolrich
  5. Anna Christina Nobre
  6. Mark G Stokes
(2015)
Testing sensory evidence against mnemonic templates
eLife 4:e09000.
https://doi.org/10.7554/eLife.09000

Share this article

https://doi.org/10.7554/eLife.09000

Further reading

    1. Neuroscience
    Elissa Sutlief, Charlie Walters ... Marshall G Hussain Shuler
    Research Article

    Reward-rate maximization is a prominent normative principle in behavioral ecology, neuroscience, economics, and AI. Here, we identify, compare, and analyze equations to maximize reward rate when assessing whether to initiate a pursuit. In deriving expressions for the value of a pursuit, we show that time’s cost consists of both apportionment and opportunity cost. Reformulating value as a discounting function, we show precisely how a reward-rate-optimal agent’s discounting function (1) combines hyperbolic and linear components reflecting apportionment and opportunity costs, and (2) is dependent not only on the considered pursuit’s properties but also on time spent and rewards obtained outside the pursuit. This analysis reveals how purported signs of suboptimal behavior (hyperbolic discounting, and the Delay, Magnitude, and Sign effects) are in fact consistent with reward-rate maximization. To better account for observed decision-making errors in humans and animals, we then analyze the impact of misestimating reward-rate-maximizing parameters and find that suboptimal decisions likely stem from errors in assessing time’s apportionment—specifically, underweighting time spent outside versus inside a pursuit—which we term the ‘Malapportionment Hypothesis’. This understanding of the true pattern of temporal decision-making errors is essential to deducing the learning algorithms and representational architectures actually used by humans and animals.

    1. Neuroscience
    Lotfi Ferhat, Rabia Soussi ... Michel Khrestchatisky
    Research Article

    Preclinical and clinical studies show that mild to moderate hypothermia is neuroprotective in sudden cardiac arrest, ischemic stroke, perinatal hypoxia/ischemia, traumatic brain injury, and seizures. Induction of hypothermia largely involves physical cooling therapies, which induce several clinical complications, while some molecules have shown to be efficient in pharmacologically induced hypothermia (PIH). Neurotensin (NT), a 13 amino acid neuropeptide that regulates body temperature, interacts with various receptors to mediate its peripheral and central effects. NT induces PIH when administered intracerebrally. However, these effects are not observed if NT is administered peripherally, due to its rapid degradation and poor passage of the blood-brain barrier (BBB). We conjugated NT to peptides that bind the low-density lipoprotein receptor (LDLR) to generate ‘vectorized’ forms of NT with enhanced BBB permeability. We evaluated their effects in epileptic conditions following peripheral administration. One of these conjugates, VH-N412, displayed improved stability, binding potential to both the LDLR and NTSR-1, rodent/human cross-reactivity and improved brain distribution. In a mouse model of kainate (KA)-induced status epilepticus (SE), VH-N412 elicited rapid hypothermia associated with anticonvulsant effects, potent neuroprotection, and reduced hippocampal inflammation. VH-N412 also reduced sprouting of the dentate gyrus mossy fibers and preserved learning and memory skills in the treated mice. In cultured hippocampal neurons, VH-N412 displayed temperature-independent neuroprotective properties. To the best of our knowledge, this is the first report describing the successful treatment of SE with PIH. In all, our results show that vectorized NT may elicit different neuroprotection mechanisms mediated by hypothermia and/or by intrinsic neuroprotective properties.