Structural basis of interprotein electron transfer in bacterial sulfite oxidation

  1. Aaron P McGrath
  2. Elise L Laming
  3. G Patricia Casas Garcia
  4. Marc Kvansakul
  5. J Mitchell Guss
  6. Jill Trewhella
  7. Benoit Calmes
  8. Paul V Bernhardt
  9. Graeme R Hanson
  10. Ulrike Kappler
  11. Megan J Maher  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Victor Chang Cardiac Research Institute, Australia
  3. La Trobe University, Australia
  4. University of Sydney, Australia
  5. University of Queensland, Australia

Abstract

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction showed the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 {plus minus} 0.8 βM. The crystal structures of the oxidized SorT and SorU both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.

Article and author information

Author details

  1. Aaron P McGrath

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elise L Laming

    The Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. G Patricia Casas Garcia

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Kvansakul

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. J Mitchell Guss

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jill Trewhella

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Benoit Calmes

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul V Bernhardt

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Graeme R Hanson

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrike Kappler

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan J Maher

    School of Molecular Bioscience, University of Sydney, New South Wales, Australia
    For correspondence
    m.maher@latrobe.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, McGrath et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,342
    views
  • 290
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron P McGrath
  2. Elise L Laming
  3. G Patricia Casas Garcia
  4. Marc Kvansakul
  5. J Mitchell Guss
  6. Jill Trewhella
  7. Benoit Calmes
  8. Paul V Bernhardt
  9. Graeme R Hanson
  10. Ulrike Kappler
  11. Megan J Maher
(2015)
Structural basis of interprotein electron transfer in bacterial sulfite oxidation
eLife 4:e09066.
https://doi.org/10.7554/eLife.09066

Share this article

https://doi.org/10.7554/eLife.09066

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.