Structural basis of interprotein electron transfer in bacterial sulfite oxidation

  1. Aaron P McGrath
  2. Elise L Laming
  3. G Patricia Casas Garcia
  4. Marc Kvansakul
  5. J Mitchell Guss
  6. Jill Trewhella
  7. Benoit Calmes
  8. Paul V Bernhardt
  9. Graeme R Hanson
  10. Ulrike Kappler
  11. Megan J Maher  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Victor Chang Cardiac Research Institute, Australia
  3. La Trobe University, Australia
  4. University of Sydney, Australia
  5. University of Queensland, Australia

Abstract

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction showed the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 {plus minus} 0.8 βM. The crystal structures of the oxidized SorT and SorU both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.

Article and author information

Author details

  1. Aaron P McGrath

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elise L Laming

    The Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. G Patricia Casas Garcia

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Kvansakul

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. J Mitchell Guss

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jill Trewhella

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Benoit Calmes

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul V Bernhardt

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Graeme R Hanson

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrike Kappler

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan J Maher

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    For correspondence
    m.maher@latrobe.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael A Marletta, University of California, Berkeley, United States

Version history

  1. Received: May 28, 2015
  2. Accepted: November 12, 2015
  3. Accepted Manuscript published: December 19, 2015 (version 1)
  4. Accepted Manuscript updated: December 23, 2015 (version 2)
  5. Version of Record published: February 4, 2016 (version 3)

Copyright

© 2015, McGrath et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,323
    views
  • 282
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron P McGrath
  2. Elise L Laming
  3. G Patricia Casas Garcia
  4. Marc Kvansakul
  5. J Mitchell Guss
  6. Jill Trewhella
  7. Benoit Calmes
  8. Paul V Bernhardt
  9. Graeme R Hanson
  10. Ulrike Kappler
  11. Megan J Maher
(2015)
Structural basis of interprotein electron transfer in bacterial sulfite oxidation
eLife 4:e09066.
https://doi.org/10.7554/eLife.09066

Share this article

https://doi.org/10.7554/eLife.09066

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.