1. Structural Biology and Molecular Biophysics
Download icon

Structural basis of interprotein electron transfer in bacterial sulfite oxidation

  1. Aaron P McGrath
  2. Elise L Laming
  3. G Patricia Casas Garcia
  4. Marc Kvansakul
  5. J Mitchell Guss
  6. Jill Trewhella
  7. Benoit Calmes
  8. Paul V Bernhardt
  9. Graeme R Hanson
  10. Ulrike Kappler
  11. Megan J Maher  Is a corresponding author
  1. University of California, San Diego, United States
  2. The Victor Chang Cardiac Research Institute, Australia
  3. La Trobe University, Australia
  4. University of Sydney, Australia
  5. University of Queensland, Australia
Research Article
  • Cited 14
  • Views 1,092
  • Annotations
Cite this article as: eLife 2015;4:e09066 doi: 10.7554/eLife.09066

Abstract

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction showed the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 {plus minus} 0.8 βM. The crystal structures of the oxidized SorT and SorU both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.

Article and author information

Author details

  1. Aaron P McGrath

    Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elise L Laming

    The Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. G Patricia Casas Garcia

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Kvansakul

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. J Mitchell Guss

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jill Trewhella

    School of Molecular Bioscience, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Benoit Calmes

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul V Bernhardt

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Graeme R Hanson

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrike Kappler

    Centre for Metals in Biology, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan J Maher

    La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
    For correspondence
    m.maher@latrobe.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael A Marletta, University of California, Berkeley, United States

Publication history

  1. Received: May 28, 2015
  2. Accepted: November 12, 2015
  3. Accepted Manuscript published: December 19, 2015 (version 1)
  4. Accepted Manuscript updated: December 23, 2015 (version 2)
  5. Version of Record published: February 4, 2016 (version 3)

Copyright

© 2015, McGrath et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,092
    Page views
  • 248
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Cameron Hill et al.
    Research Article

    Time-resolved X-ray diffraction from isolated fast-twitch muscles of the mouse was used to show how structural changes in the myosin-containing thick filaments contribute to the regulation of muscle contraction, extending the previous focus on regulation by the actin-containing thin filaments. This study shows that muscle activation involves the following sequence of structural changes: thin filament activation, disruption of the helical array of myosin motors characteristic of resting muscle, release of myosin motor domains from the folded conformation on the filament backbone, and actin attachment. Physiological force generation in the 'twitch' response of skeletal muscle to single action potential stimulation is limited by incomplete activation of the thick filament and the rapid inactivation of both filaments. Muscle relaxation after repetitive stimulation is accompanied by complete recovery of the folded motor conformation on the filament backbone but incomplete reformation of the helical array, revealing a structural basis for post-tetanic potentiation in isolated muscle.

    1. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas et al.
    Tools and Resources

    For a more complete understanding of molecular mechanisms, it is important to study macromolecules and their assemblies in the broader context of the cell. This context can be visualized at nanometer resolution in three dimensions (3D) using electron cryo-tomography, which requires tilt series to be recorded and computationally aligned, currently limiting throughput. Additionally, the high-resolution signal preserved in the raw tomograms is currently limited by a number of technical difficulties, leading to an increased false-positive detection rate when using 3D template matching to find molecular complexes in tomograms. We have recently described a 2D template matching approach that addresses these issues by including high-resolution signal preserved in single-tilt images. A current limitation of this approach is the high computational cost that limits throughput. We describe here a GPU-accelerated implementation of 2D template matching in the image processing software cisTEM that allows for easy scaling and improves the accessibility of this approach. We apply 2D template matching to identify ribosomes in images of frozen-hydrated Mycoplasma pneumoniae cells with high precision and sensitivity, demonstrating that this is a versatile tool for in situ visual proteomics and in situ structure determination. We benchmark the results with 3D template matching of tomograms acquired on identical sample locations and identify strengths and weaknesses of both techniques, which offer complementary information about target localization and identity.