A simple method for generating high-resolution maps of genome wide protein binding

  1. Peter J Skene
  2. Steven Henikoff  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

Chromatin immunoprecipitation (ChIP) and its derivatives are the main techniques used to determine transcription factor binding sites. However, conventional ChIP with sequencing (ChIP-seq) has problems with poor resolution, and newer techniques require significant experimental alterations and complex bioinformatics. Previously we have used a new crosslinking ChIP-seq protocol (X-ChIP-seq) to perform high-resolution mapping of RNA Polymerase II (Skene et al., 2014). Here we build upon this work and compare X-ChIP-seq to existing methodologies. By using micrococcal nuclease, which has both endo- and exo-nuclease activity, to fragment the chromatin and thereby generate precise protein-DNA footprints, high-resolution X-ChIP-seq achieves single base-pair resolution of transcription factor binding. A significant advantage of this protocol is the minimal alteration to the conventional ChIP-seq workflow and simple bioinformatic processing.

Article and author information

Author details

  1. Peter J Skene

    N/A, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven Henikoff

    N/A, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    steveh@fhcrc.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado at Boulder, United States

Version history

  1. Received: June 4, 2015
  2. Accepted: June 9, 2015
  3. Accepted Manuscript published: June 16, 2015 (version 1)
  4. Version of Record published: June 25, 2015 (version 2)

Copyright

© 2015, Skene & Henikoff

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,156
    views
  • 2,531
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter J Skene
  2. Steven Henikoff
(2015)
A simple method for generating high-resolution maps of genome wide protein binding
eLife 4:e09225.
https://doi.org/10.7554/eLife.09225

Share this article

https://doi.org/10.7554/eLife.09225

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.