Matrix metalloproteinase 14 is required for fibrous tissue expansion

  1. Susan H Taylor
  2. Ching-Yan Chloé Yeung
  3. Nicholas S Kalson
  4. Yinhui Lu
  5. Paola Zigrino
  6. Tobias Starborg
  7. Stacey Warwood
  8. David F Holmes
  9. Elizabeth G Canty-Laird
  10. Cornelia Mauch
  11. Karl E Kadler  Is a corresponding author
  1. University of Manchester, United Kingdom
  2. University of Cologne, Germany
  3. University of Liverpool, United Kingdom

Abstract

Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. Here we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors.

Article and author information

Author details

  1. Susan H Taylor

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ching-Yan Chloé Yeung

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicholas S Kalson

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Yinhui Lu

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Paola Zigrino

    Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tobias Starborg

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Stacey Warwood

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David F Holmes

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Elizabeth G Canty-Laird

    Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Cornelia Mauch

    Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Karl E Kadler

    Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
    For correspondence
    karl.kadler@manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: The care and use of all mice in this study was carried out in accordance with UK Home Office regulations, UK Animals (Scientific Procedures) Act of 1986 under the UK Home Office licence (PPL 40/3485). All animals were sacrificed by a Schedule 1 procedure by trained personnel. MMP14 KO mice were as described previously (Zhou et al., 2000). To generate mice in which MMP14 is ablated in tendon-lineage cells, we crossed mice expressing Cre recombinase under the control of Scleraxis (ScxCre; C57BL/6) (Blitz et al., 2013) with mice carrying the floxed exons (exons 2 to 4) of the MMP14 gene (MMP14-floxed; C57BL/6) (Zigrino et al., 2012). MMP13 KO embryos were a generous gift from Zena Werb (Stickens et al., 2004). MMP2 heterozygous mice were imported from RIKEN BioResource Center (GelAKO/RBRC00398; C57) (Itoh et al., 1997) and bred to homozygosity. Col-r/r mice were imported from Jackson Laboratory (B6;129S4-Col1a1tm1Jae/J) (Liu et al., 1995). X-ray analyses were performed as described previously (Yeung et al., 2014).

Version history

  1. Received: June 10, 2015
  2. Accepted: September 20, 2015
  3. Accepted Manuscript published: September 21, 2015 (version 1)
  4. Version of Record published: October 20, 2015 (version 2)

Copyright

© 2015, Taylor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,626
    Page views
  • 608
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susan H Taylor
  2. Ching-Yan Chloé Yeung
  3. Nicholas S Kalson
  4. Yinhui Lu
  5. Paola Zigrino
  6. Tobias Starborg
  7. Stacey Warwood
  8. David F Holmes
  9. Elizabeth G Canty-Laird
  10. Cornelia Mauch
  11. Karl E Kadler
(2015)
Matrix metalloproteinase 14 is required for fibrous tissue expansion
eLife 4:e09345.
https://doi.org/10.7554/eLife.09345

Share this article

https://doi.org/10.7554/eLife.09345

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.