Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma

  1. Simone Hettmer
  2. Anna C Schinzel
  3. Daria Tchessalova
  4. Michaela Schneider
  5. Christina L. Parker
  6. Roderick Bronson
  7. Nigel G.J. Richards
  8. William Hahn
  9. Amy J Wagers  Is a corresponding author
  1. University Medical Center Freiburg, Germany
  2. Dana-Farber Cancer Institute, United States
  3. University of Michigan, United States
  4. University of North Carolina, United States
  5. Harvard University, United States
  6. Indiana University - Purdue University Indianapolis, United States
  7. Dana Farber Cancer Institute, United States

Abstract

Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value.

Article and author information

Author details

  1. Simone Hettmer

    Pediatric Hematology/ Oncology, University Medical Center Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Anna C Schinzel

    Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  3. Daria Tchessalova

    Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Michaela Schneider

    Pediatric hematology/ oncology, University Medical Center Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Christina L. Parker

    Molecular Pharmaceutics, University of North Carolina, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  6. Roderick Bronson

    Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  7. Nigel G.J. Richards

    Chemistry & Chemical Biology, Indiana University - Purdue University Indianapolis, Indianapolis, United States
    Competing interests
    No competing interests declared.
  8. William Hahn

    Dana Farber Cancer Institute, *, United States
    Competing interests
    No competing interests declared.
  9. Amy J Wagers

    Harvard Stem Cell Institute, Harvard University, United States
    For correspondence
    amy.wagers@joslin.harvard.edu
    Competing interests
    Amy J Wagers, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Joslin Diabetes Center. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Joslin Diabetes Center. All surgery was performed under tribromoethanol or isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2015, Hettmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,691
    views
  • 630
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simone Hettmer
  2. Anna C Schinzel
  3. Daria Tchessalova
  4. Michaela Schneider
  5. Christina L. Parker
  6. Roderick Bronson
  7. Nigel G.J. Richards
  8. William Hahn
  9. Amy J Wagers
(2015)
Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma
eLife 4:e09436.
https://doi.org/10.7554/eLife.09436

Share this article

https://doi.org/10.7554/eLife.09436

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.