Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma

  1. Simone Hettmer
  2. Anna C Schinzel
  3. Daria Tchessalova
  4. Michaela Schneider
  5. Christina L. Parker
  6. Roderick Bronson
  7. Nigel G.J. Richards
  8. William Hahn
  9. Amy J Wagers  Is a corresponding author
  1. University Medical Center Freiburg, Germany
  2. Dana-Farber Cancer Institute, United States
  3. University of Michigan, United States
  4. University of North Carolina, United States
  5. Harvard University, United States
  6. Indiana University - Purdue University Indianapolis, United States
  7. Dana Farber Cancer Institute, United States

Abstract

Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value.

Article and author information

Author details

  1. Simone Hettmer

    Pediatric Hematology/ Oncology, University Medical Center Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  2. Anna C Schinzel

    Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  3. Daria Tchessalova

    Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Michaela Schneider

    Pediatric hematology/ oncology, University Medical Center Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Christina L. Parker

    Molecular Pharmaceutics, University of North Carolina, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  6. Roderick Bronson

    Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    No competing interests declared.
  7. Nigel G.J. Richards

    Chemistry & Chemical Biology, Indiana University - Purdue University Indianapolis, Indianapolis, United States
    Competing interests
    No competing interests declared.
  8. William Hahn

    Dana Farber Cancer Institute, *, United States
    Competing interests
    No competing interests declared.
  9. Amy J Wagers

    Harvard Stem Cell Institute, Harvard University, United States
    For correspondence
    amy.wagers@joslin.harvard.edu
    Competing interests
    Amy J Wagers, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Joslin Diabetes Center. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Joslin Diabetes Center. All surgery was performed under tribromoethanol or isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2015, Hettmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,700
    views
  • 631
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simone Hettmer
  2. Anna C Schinzel
  3. Daria Tchessalova
  4. Michaela Schneider
  5. Christina L. Parker
  6. Roderick Bronson
  7. Nigel G.J. Richards
  8. William Hahn
  9. Amy J Wagers
(2015)
Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma
eLife 4:e09436.
https://doi.org/10.7554/eLife.09436

Share this article

https://doi.org/10.7554/eLife.09436

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.