Mapping residual transmission for malaria elimination

  1. Robert C Reiner  Is a corresponding author
  2. Arnaud Le Manach
  3. Simon Kunene
  4. Nyasatu Ntshalintshali
  5. Michelle S Hsiang
  6. T Alex Perkins
  7. Bryan Greenhouse
  8. Andrew J Tatem
  9. Justin M Cohen
  10. David L Smith
  1. National Institutes of Health, United States
  2. Clinton Health Access Initiative, United States
  3. National Malaria Control Program, Swaziland
  4. University of Texas Southwestern Medical Center, United States
  5. University of California, San Francisco, United States

Abstract

Eliminating malaria from a defined region involves draining the endemic parasite reservoir and minimizing local malaria transmission around imported malaria infections1. In the last phases of malaria elimination, as universal interventions reap diminishing marginal returns, national resources must become increasingly devoted to identifying where residual transmission is occurring. The needs for accurate measures of progress and practical advice about how to allocate scarce resources require new analytical methods to quantify fine-grained heterogeneity in malaria risk. Using routine national surveillance data from Swaziland (a sub-Saharan country on the verge of elimination), we estimated individual reproductive numbers. Fine-grained maps of reproductive numbers and local malaria importation rates were combined to show `malariogenic potential,' a first for malaria elimination. As countries approach elimination, these individual-based measures of transmission risk provide meaningful metrics for planning programmatic responses and prioritizing areas where interventions will contribute most to malaria elimination.

Article and author information

Author details

  1. Robert C Reiner

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    For correspondence
    rcreiner@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnaud Le Manach

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Simon Kunene

    National Malaria Control Program, Manzini, Swaziland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nyasatu Ntshalintshali

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michelle S Hsiang

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. T Alex Perkins

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bryan Greenhouse

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew J Tatem

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Justin M Cohen

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David L Smith

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Reiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,937
    views
  • 710
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert C Reiner
  2. Arnaud Le Manach
  3. Simon Kunene
  4. Nyasatu Ntshalintshali
  5. Michelle S Hsiang
  6. T Alex Perkins
  7. Bryan Greenhouse
  8. Andrew J Tatem
  9. Justin M Cohen
  10. David L Smith
(2015)
Mapping residual transmission for malaria elimination
eLife 4:e09520.
https://doi.org/10.7554/eLife.09520

Share this article

https://doi.org/10.7554/eLife.09520

Further reading

    1. Medicine
    Jiang Li, Yuefeng Yu ... Bin Wang
    Research Article

    Background:

    Identification of individuals with prediabetes who are at high risk of developing diabetes allows for precise interventions. We aimed to determine the role of nuclear magnetic resonance (NMR)-based metabolomic signature in predicting the progression from prediabetes to diabetes.

    Methods:

    This prospective study included 13,489 participants with prediabetes who had metabolomic data from the UK Biobank. Circulating metabolites were quantified via NMR spectroscopy. Cox proportional hazard (CPH) models were performed to estimate the associations between metabolites and diabetes risk. Supporting vector machine, random forest, and extreme gradient boosting were used to select the optimal metabolite panel for prediction. CPH and random survival forest (RSF) models were utilized to validate the predictive ability of the metabolites.

    Results:

    During a median follow-up of 13.6 years, 2525 participants developed diabetes. After adjusting for covariates, 94 of 168 metabolites were associated with risk of progression to diabetes. A panel of nine metabolites, selected by all three machine-learning algorithms, was found to significantly improve diabetes risk prediction beyond conventional risk factors in the CPH model (area under the receiver-operating characteristic curve, 1 year: 0.823 for risk factors + metabolites vs 0.759 for risk factors, 5 years: 0.830 vs 0.798, 10 years: 0.801 vs 0.776, all p < 0.05). Similar results were observed from the RSF model. Categorization of participants according to the predicted value thresholds revealed distinct cumulative risk of diabetes.

    Conclusions:

    Our study lends support for use of the metabolite markers to help determine individuals with prediabetes who are at high risk of progressing to diabetes and inform targeted and efficient interventions.

    Funding:

    Shanghai Municipal Health Commission (2022XD017). Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20212501). Shanghai Municipal Human Resources and Social Security Bureau (2020074). Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR4006). Science and Technology Commission of Shanghai Municipality (22015810500).

    1. Medicine
    Jon R Lorsch, Lawrence A Tabak, Monica M Bertagnolli
    Feature Article

    Three senior figures at the US National Institutes of Health explain why the agency remains committed to supporting basic science and research.