1. Neuroscience
Download icon

Keratinocytes can modulate and directly initiate nociceptive responses

  1. Kyle M Baumbauer
  2. Jennifer J DeBerry
  3. Peter C Adelman
  4. Richard H Miller
  5. Junichi Hachisuka
  6. Kuan Hsien Lee
  7. Sarah E Ross
  8. H Richard Koerber
  9. Brian M Davis
  10. Kathryn M Albers  Is a corresponding author
  1. University of Connecticut, United States
  2. University of Alabama, United States
  3. University of Pittsburgh, United States
Research Article
  • Cited 83
  • Views 4,373
  • Annotations
Cite this article as: eLife 2015;4:e09674 doi: 10.7554/eLife.09674

Abstract

How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can direct AP firing in nociceptor as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing.

Article and author information

Author details

  1. Kyle M Baumbauer

    School of Nursing, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer J DeBerry

    Department of Anesthesiology, University of Alabama, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter C Adelman

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard H Miller

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junichi Hachisuka

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kuan Hsien Lee

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah E Ross

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. H Richard Koerber

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brian M Davis

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn M Albers

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    kaa2@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled in compliance with an approved Institutional Animal Care and Use Committee (IACUC) protocol (#14074296) of the University of Pittsburgh. All surgery was performed under appropriate anesthesia with every effort was made to minimize pain.

Reviewing Editor

  1. David D Ginty, Howard Hughes Medical Institute, Harvard Medical School, United States

Publication history

  1. Received: June 25, 2015
  2. Accepted: August 28, 2015
  3. Accepted Manuscript published: September 2, 2015 (version 1)
  4. Version of Record published: September 21, 2015 (version 2)

Copyright

© 2015, Baumbauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,373
    Page views
  • 1,004
    Downloads
  • 83
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Jorrit S Montijn et al.
    Tools and Resources Updated

    Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.