Keratinocytes can modulate and directly initiate nociceptive responses

  1. Kyle M Baumbauer
  2. Jennifer J DeBerry
  3. Peter C Adelman
  4. Richard H Miller
  5. Junichi Hachisuka
  6. Kuan Hsien Lee
  7. Sarah E Ross
  8. H Richard Koerber
  9. Brian M Davis
  10. Kathryn M Albers  Is a corresponding author
  1. University of Connecticut, United States
  2. University of Alabama, United States
  3. University of Pittsburgh, United States

Abstract

How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can direct AP firing in nociceptor as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing.

Article and author information

Author details

  1. Kyle M Baumbauer

    School of Nursing, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer J DeBerry

    Department of Anesthesiology, University of Alabama, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter C Adelman

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard H Miller

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junichi Hachisuka

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kuan Hsien Lee

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah E Ross

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. H Richard Koerber

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brian M Davis

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn M Albers

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    kaa2@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled in compliance with an approved Institutional Animal Care and Use Committee (IACUC) protocol (#14074296) of the University of Pittsburgh. All surgery was performed under appropriate anesthesia with every effort was made to minimize pain.

Copyright

© 2015, Baumbauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,599
    views
  • 1,137
    downloads
  • 132
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyle M Baumbauer
  2. Jennifer J DeBerry
  3. Peter C Adelman
  4. Richard H Miller
  5. Junichi Hachisuka
  6. Kuan Hsien Lee
  7. Sarah E Ross
  8. H Richard Koerber
  9. Brian M Davis
  10. Kathryn M Albers
(2015)
Keratinocytes can modulate and directly initiate nociceptive responses
eLife 4:e09674.
https://doi.org/10.7554/eLife.09674

Share this article

https://doi.org/10.7554/eLife.09674

Further reading

    1. Cell Biology
    2. Neuroscience
    Sara Bitar, Timo Baumann ... Axel Methner
    Research Article Updated

    Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila ortholog of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.

    1. Neuroscience
    Hohyun Cho, Markus Adamek ... Peter Brunner
    Tools and Resources

    Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/f noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation’s fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method’s specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.