Keratinocytes can modulate and directly initiate nociceptive responses

  1. Kyle M Baumbauer
  2. Jennifer J DeBerry
  3. Peter C Adelman
  4. Richard H Miller
  5. Junichi Hachisuka
  6. Kuan Hsien Lee
  7. Sarah E Ross
  8. H Richard Koerber
  9. Brian M Davis
  10. Kathryn M Albers  Is a corresponding author
  1. University of Connecticut, United States
  2. University of Alabama, United States
  3. University of Pittsburgh, United States

Abstract

How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can direct AP firing in nociceptor as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing.

Article and author information

Author details

  1. Kyle M Baumbauer

    School of Nursing, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer J DeBerry

    Department of Anesthesiology, University of Alabama, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter C Adelman

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard H Miller

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junichi Hachisuka

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kuan Hsien Lee

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah E Ross

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. H Richard Koerber

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brian M Davis

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn M Albers

    Department of Neurobiology, Pittsburgh Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    kaa2@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled in compliance with an approved Institutional Animal Care and Use Committee (IACUC) protocol (#14074296) of the University of Pittsburgh. All surgery was performed under appropriate anesthesia with every effort was made to minimize pain.

Copyright

© 2015, Baumbauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,629
    views
  • 1,147
    downloads
  • 138
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyle M Baumbauer
  2. Jennifer J DeBerry
  3. Peter C Adelman
  4. Richard H Miller
  5. Junichi Hachisuka
  6. Kuan Hsien Lee
  7. Sarah E Ross
  8. H Richard Koerber
  9. Brian M Davis
  10. Kathryn M Albers
(2015)
Keratinocytes can modulate and directly initiate nociceptive responses
eLife 4:e09674.
https://doi.org/10.7554/eLife.09674

Share this article

https://doi.org/10.7554/eLife.09674

Further reading

    1. Neuroscience
    Jan H Kirchner, Lucas Euler ... Julijana Gjorgjieva
    Research Article

    Dendritic branching and synaptic organization shape single-neuron and network computations. How they emerge simultaneously during brain development as neurons become integrated into functional networks is still not mechanistically understood. Here, we propose a mechanistic model in which dendrite growth and the organization of synapses arise from the interaction of activity-independent cues from potential synaptic partners and local activity-dependent synaptic plasticity. Consistent with experiments, three phases of dendritic growth – overshoot, pruning, and stabilization – emerge naturally in the model. The model generates stellate-like dendritic morphologies that capture several morphological features of biological neurons under normal and perturbed learning rules, reflecting biological variability. Model-generated dendrites have approximately optimal wiring length consistent with experimental measurements. In addition to establishing dendritic morphologies, activity-dependent plasticity rules organize synapses into spatial clusters according to the correlated activity they experience. We demonstrate that a trade-off between activity-dependent and -independent factors influences dendritic growth and synaptic location throughout development, suggesting that early developmental variability can affect mature morphology and synaptic function. Therefore, a single mechanistic model can capture dendritic growth and account for the synaptic organization of correlated inputs during development. Our work suggests concrete mechanistic components underlying the emergence of dendritic morphologies and synaptic formation and removal in function and dysfunction, and provides experimentally testable predictions for the role of individual components.

    1. Neuroscience
    Christian Thome, Jan Maximilian Janssen ... Maren Engelhardt
    Tools and Resources

    The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.