Genetic architecture of natural variation in cuticularhydrocarbon composition in Drosophila melanogaster

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay  Is a corresponding author
  1. Okinawa Institute of Science and Technology Graduate University, Japan
  2. Cornell University, United States
  3. North Carolina State University, United States

Abstract

Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

Article and author information

Author details

  1. Lauren M Dembeck

    Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Katalin Böröczky

    Department of Neurobiology and Behavior, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wen Huang

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Coby Schal

    Genetics Program, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert RH Anholt

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trudy FC Mackay

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    For correspondence
    trudy_mackay@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Dembeck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,840
    views
  • 714
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay
(2015)
Genetic architecture of natural variation in cuticularhydrocarbon composition in Drosophila melanogaster
eLife 4:e09861.
https://doi.org/10.7554/eLife.09861

Share this article

https://doi.org/10.7554/eLife.09861

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    James Boocock, Noah Alexander ... Leonid Kruglyak
    Research Article

    Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Chinmaya Jena, Saillesh Chinnaraj ... Nishad Matange
    Research Advance

    Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, eLife, 2021) shown that, in Escherichia coli, mutations at the mgrB locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the folA gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing folA and spanning hundreds of kilobases. This duplication was rare in wild-type E. coli. However, its frequency was elevated in a lon-knockout strain, altering the mutational landscape early during trimethoprim adaptation. We then exploit this system to investigate the relationship between trimethoprim pressure and folA copy number. During long-term evolution, folA duplications were frequently reversed. Reversal was slower under antibiotic pressure, first requiring the acquisition of point mutations in DHFR or its promoter. Unexpectedly, despite resistance-conferring point mutations, some populations under high trimethoprim pressure maintained folA duplication to compensate for low abundance DHFR mutants. We find that evolution of gene dosage depends on expression demand, which is generated by antibiotic and exacerbated by proteolysis of drug-resistant mutants of DHFR. We propose a novel role for proteostasis as a determinant of copy number evolution in antibiotic-resistant bacteria.