Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay  Is a corresponding author
  1. Okinawa Institute of Science and Technology Graduate University, Japan
  2. Cornell University, United States
  3. North Carolina State University, United States

Abstract

Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

Article and author information

Author details

  1. Lauren M Dembeck

    Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Katalin Böröczky

    Department of Neurobiology and Behavior, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wen Huang

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Coby Schal

    Genetics Program, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert RH Anholt

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trudy FC Mackay

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    For correspondence
    trudy_mackay@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, Denmark

Version history

  1. Received: July 3, 2015
  2. Accepted: November 12, 2015
  3. Accepted Manuscript published: November 14, 2015 (version 1)
  4. Accepted Manuscript updated: November 20, 2015 (version 2)
  5. Version of Record published: January 15, 2016 (version 3)

Copyright

© 2015, Dembeck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,775
    views
  • 689
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay
(2015)
Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
eLife 4:e09861.
https://doi.org/10.7554/eLife.09861

Share this article

https://doi.org/10.7554/eLife.09861

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.