Abstract
Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.
Article and author information
Author details
Reviewing Editor
- Daniel J Kliebenstein, University of California, Davis, Denmark
Publication history
- Received: July 3, 2015
- Accepted: November 12, 2015
- Accepted Manuscript published: November 14, 2015 (version 1)
- Accepted Manuscript updated: November 20, 2015 (version 2)
- Version of Record published: January 15, 2016 (version 3)
Copyright
© 2015, Dembeck et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,525
- Page views
-
- 602
- Downloads
-
- 56
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.