Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay  Is a corresponding author
  1. Okinawa Institute of Science and Technology Graduate University, Japan
  2. Cornell University, United States
  3. North Carolina State University, United States

Abstract

Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

Article and author information

Author details

  1. Lauren M Dembeck

    Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Katalin Böröczky

    Department of Neurobiology and Behavior, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wen Huang

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Coby Schal

    Genetics Program, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert RH Anholt

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trudy FC Mackay

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    For correspondence
    trudy_mackay@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Dembeck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,851
    views
  • 721
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay
(2015)
Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
eLife 4:e09861.
https://doi.org/10.7554/eLife.09861

Share this article

https://doi.org/10.7554/eLife.09861

Further reading

    1. Genetics and Genomics
    Mengjia Li, Hengchao Zhang ... Lixiang Chen
    Research Article

    Isocitrate dehydrogenase 1 (IDH1) is the key enzyme that can modulate cellular metabolism, epigenetic modification, and redox homeostasis. Gain-of-function mutations and decreased expression of IDH1 have been demonstrated to be associated with pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, the function and mechanism of IDH1 in human erythropoiesis still remains unclear. Here, utilizing the human erythropoiesis system, we present an evidence of IDH1-mediated chromatin state reprogramming besides its well-characterized metabolism effects. We found that knockdown IDH1 induced chromatin reorganization and subsequently led to abnormalities biological events in erythroid precursors, which could not be rescued by addition of reactive oxygen species (ROS) scavengers or supplementation of α-ketoglutarate (α-KG).We further revealed that knockdown IDH1 induces genome-wide changes in distribution and intensity of multiple histone marks, among which H3K79me3 was identified as a critical factor in chromatin state reprogramming. Integrated analysis of ChIP-seq, ATAC-seq, and RNA-seq recognized that SIRT1 was the key gene affected by IDH1 deficiency. Thus, our current work provided novel insights for further clarifying fundamental biological function of IDH1 which has substantial implications for an in-depth understanding of pathogenesis of diseases with IDH1 dysfunction and accordingly development of therapeutic strategies.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.