Claudin-2-dependent paracellular channels are dynamically gated

  1. Christopher R Weber
  2. Guo Hua Liang
  3. Yitang Wang
  4. Sudipto Das
  5. Le Shen
  6. Alan S L Yu
  7. Deborah J Nelson
  8. Jerrold R Turner  Is a corresponding author
  1. The University of Chicago, United States
  2. Lupin Research Park, India
  3. University of Kansas Medical Center, United States

Abstract

Intercellular tight junctions form selectively permeable barriers that seal the paracellular space. Trans-tight junction flux has been measured across large epithelial surfaces, but conductance across individual channels has never been measured. We report a novel trans-tight junction patch clamp technique that detects flux across individual claudin-2 channels within the tight junction of cultured canine renal tubule or human intestinal epithelial monolayers. In both cells, claudin-2 channels display conductances of ~90 pS. The channels are gated, strictly dependent on claudin-2 expression, and display size- and charge-selectivity typical of claudin-2. Kinetic analyses indicate one open and two distinct closed states. Conductance is symmetrical and reversible, characteristic of a passive, paracellular process, and blocked by reduced temperature or site-directed mutagenesis and chemical derivatization of the claudin-2 pore. We conclude that claudin-2 forms gated paracellular channels and speculate that modulation of tight junction channel gating kinetics may be an unappreciated mechanism of barrier regulation.

Article and author information

Author details

  1. Christopher R Weber

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guo Hua Liang

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yitang Wang

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudipto Das

    Lupin Research Park, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Le Shen

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan S L Yu

    Division of Nephrology and Hypertension and the Kidney Institute, University of Kansas Medical Center, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Deborah J Nelson

    Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jerrold R Turner

    Department of Pathology, The University of Chicago, Chicago, United States
    For correspondence
    jturner@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,722
    views
  • 786
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher R Weber
  2. Guo Hua Liang
  3. Yitang Wang
  4. Sudipto Das
  5. Le Shen
  6. Alan S L Yu
  7. Deborah J Nelson
  8. Jerrold R Turner
(2015)
Claudin-2-dependent paracellular channels are dynamically gated
eLife 4:e09906.
https://doi.org/10.7554/eLife.09906

Share this article

https://doi.org/10.7554/eLife.09906

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.