Claudin-2-dependent paracellular channels are dynamically gated

  1. Christopher R Weber
  2. Guo Hua Liang
  3. Yitang Wang
  4. Sudipto Das
  5. Le Shen
  6. Alan S L Yu
  7. Deborah J Nelson
  8. Jerrold R Turner  Is a corresponding author
  1. The University of Chicago, United States
  2. Lupin Research Park, India
  3. University of Kansas Medical Center, United States

Abstract

Intercellular tight junctions form selectively permeable barriers that seal the paracellular space. Trans-tight junction flux has been measured across large epithelial surfaces, but conductance across individual channels has never been measured. We report a novel trans-tight junction patch clamp technique that detects flux across individual claudin-2 channels within the tight junction of cultured canine renal tubule or human intestinal epithelial monolayers. In both cells, claudin-2 channels display conductances of ~90 pS. The channels are gated, strictly dependent on claudin-2 expression, and display size- and charge-selectivity typical of claudin-2. Kinetic analyses indicate one open and two distinct closed states. Conductance is symmetrical and reversible, characteristic of a passive, paracellular process, and blocked by reduced temperature or site-directed mutagenesis and chemical derivatization of the claudin-2 pore. We conclude that claudin-2 forms gated paracellular channels and speculate that modulation of tight junction channel gating kinetics may be an unappreciated mechanism of barrier regulation.

Article and author information

Author details

  1. Christopher R Weber

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guo Hua Liang

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yitang Wang

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudipto Das

    Lupin Research Park, Pune, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Le Shen

    Department of Pathology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan S L Yu

    Division of Nephrology and Hypertension and the Kidney Institute, University of Kansas Medical Center, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Deborah J Nelson

    Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jerrold R Turner

    Department of Pathology, The University of Chicago, Chicago, United States
    For correspondence
    jturner@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,727
    views
  • 790
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher R Weber
  2. Guo Hua Liang
  3. Yitang Wang
  4. Sudipto Das
  5. Le Shen
  6. Alan S L Yu
  7. Deborah J Nelson
  8. Jerrold R Turner
(2015)
Claudin-2-dependent paracellular channels are dynamically gated
eLife 4:e09906.
https://doi.org/10.7554/eLife.09906

Share this article

https://doi.org/10.7554/eLife.09906

Further reading

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.