Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou  Is a corresponding author
  1. Texas A&M University Health Science Center, United States
  2. University of Massachusetts Medical school, United States
  3. University of Massachusetts Medical School, United States
  4. Beijing Normal University, China
  5. La Jolla Institute for Allergy and Immunology, United States

Abstract

The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed "Opto-CRAC") that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded "photoactivatable adjuvant" to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote control of Ca2+-modulated activities with tailored function.

Article and author information

Author details

  1. Lian He

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuanwei Zhang

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical school, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guolin Ma

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng Tan

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhanjun Li

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shengbing Zhang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiang Wu

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ji Jing

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shaohai Fang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lijuan Zhou

    Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Youjun Wang

    Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yun Huang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrick Hogan

    Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Gang Han

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yubin Zhou

    Center for Translational Cancer Research, Texas A&M University Health Science Center, Houston, United States
    For correspondence
    yzhou@ibt.tamhsc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Mice-related experiments were approved by Institutional Animal Care and Use Committees of Institute of Biosciences and Technology, Texas A&M University Health Science Center (#12044 and #2014-0228-IBT; Houston, TX, USA; Animal Welfare Assurance Number A3893-01) and University of Massachusetts Medical School (#A-2512-15, Worcester, MA, USA; Animal Welfare Assurance Number A3306-01).

Copyright

© 2015, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,675
    views
  • 2,485
    downloads
  • 185
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou
(2015)
Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation
eLife 4:e10024.
https://doi.org/10.7554/eLife.10024

Share this article

https://doi.org/10.7554/eLife.10024

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Julia Shangguan, Ronald S Rock
    Research Article

    Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.