Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou  Is a corresponding author
  1. Texas A&M University Health Science Center, United States
  2. University of Massachusetts Medical school, United States
  3. University of Massachusetts Medical School, United States
  4. Beijing Normal University, China
  5. La Jolla Institute for Allergy and Immunology, United States

Abstract

The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed "Opto-CRAC") that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded "photoactivatable adjuvant" to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote control of Ca2+-modulated activities with tailored function.

Article and author information

Author details

  1. Lian He

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuanwei Zhang

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical school, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guolin Ma

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng Tan

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhanjun Li

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shengbing Zhang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiang Wu

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ji Jing

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shaohai Fang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lijuan Zhou

    Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Youjun Wang

    Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yun Huang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrick Hogan

    Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Gang Han

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yubin Zhou

    Center for Translational Cancer Research, Texas A&M University Health Science Center, Houston, United States
    For correspondence
    yzhou@ibt.tamhsc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Mice-related experiments were approved by Institutional Animal Care and Use Committees of Institute of Biosciences and Technology, Texas A&M University Health Science Center (#12044 and #2014-0228-IBT; Houston, TX, USA; Animal Welfare Assurance Number A3893-01) and University of Massachusetts Medical School (#A-2512-15, Worcester, MA, USA; Animal Welfare Assurance Number A3306-01).

Copyright

© 2015, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,965
    views
  • 2,510
    downloads
  • 189
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou
(2015)
Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation
eLife 4:e10024.
https://doi.org/10.7554/eLife.10024

Share this article

https://doi.org/10.7554/eLife.10024

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.