Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou  Is a corresponding author
  1. Texas A&M University Health Science Center, United States
  2. University of Massachusetts Medical school, United States
  3. University of Massachusetts Medical School, United States
  4. Beijing Normal University, China
  5. La Jolla Institute for Allergy and Immunology, United States

Abstract

The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed "Opto-CRAC") that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded "photoactivatable adjuvant" to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote control of Ca2+-modulated activities with tailored function.

Article and author information

Author details

  1. Lian He

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuanwei Zhang

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical school, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guolin Ma

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peng Tan

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhanjun Li

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shengbing Zhang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiang Wu

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ji Jing

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shaohai Fang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lijuan Zhou

    Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Youjun Wang

    Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yun Huang

    Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrick Hogan

    Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Gang Han

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Yubin Zhou

    Center for Translational Cancer Research, Texas A&M University Health Science Center, Houston, United States
    For correspondence
    yzhou@ibt.tamhsc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Mice-related experiments were approved by Institutional Animal Care and Use Committees of Institute of Biosciences and Technology, Texas A&M University Health Science Center (#12044 and #2014-0228-IBT; Houston, TX, USA; Animal Welfare Assurance Number A3893-01) and University of Massachusetts Medical School (#A-2512-15, Worcester, MA, USA; Animal Welfare Assurance Number A3306-01).

Copyright

© 2015, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,765
    views
  • 2,494
    downloads
  • 185
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lian He
  2. Yuanwei Zhang
  3. Guolin Ma
  4. Peng Tan
  5. Zhanjun Li
  6. Shengbing Zhang
  7. Xiang Wu
  8. Ji Jing
  9. Shaohai Fang
  10. Lijuan Zhou
  11. Youjun Wang
  12. Yun Huang
  13. Patrick Hogan
  14. Gang Han
  15. Yubin Zhou
(2015)
Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation
eLife 4:e10024.
https://doi.org/10.7554/eLife.10024

Share this article

https://doi.org/10.7554/eLife.10024

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.