Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress

  1. Santiago Vernia
  2. Caroline Morel
  3. Joseph C Madara
  4. Julie Cavanagh-Kyros
  5. Tamera Barrett
  6. Kathryn Chase
  7. Norman J Kennedy
  8. Dae Young Jung
  9. Jason K Kim
  10. Neil Aronin
  11. Richard A Flavell
  12. Bradford B Lowell
  13. Roger J Davis  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. Howard Hughes Medical Institute, Yale University School of Medicine, United States

Abstract

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.

Article and author information

Author details

  1. Santiago Vernia

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Caroline Morel

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Joseph C Madara

    Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  4. Julie Cavanagh-Kyros

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Tamera Barrett

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Kathryn Chase

    Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  7. Norman J Kennedy

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  8. Dae Young Jung

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  9. Jason K Kim

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  10. Neil Aronin

    Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  11. Richard A Flavell

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Bradford B Lowell

    Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  13. Roger J Davis

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    roger.davis@umassmed.edu
    Competing interests
    Roger J Davis, Reviewing Editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A-978 and #A-1032) of the University of Massachusetts Medical School.

Copyright

© 2016, Vernia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,560
    views
  • 389
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Santiago Vernia
  2. Caroline Morel
  3. Joseph C Madara
  4. Julie Cavanagh-Kyros
  5. Tamera Barrett
  6. Kathryn Chase
  7. Norman J Kennedy
  8. Dae Young Jung
  9. Jason K Kim
  10. Neil Aronin
  11. Richard A Flavell
  12. Bradford B Lowell
  13. Roger J Davis
(2016)
Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress
eLife 5:e10031.
https://doi.org/10.7554/eLife.10031

Share this article

https://doi.org/10.7554/eLife.10031

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.