Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

  1. William Menegas
  2. Joseph F Bergan
  3. Sachie K Ogawa
  4. Yoh Isogai
  5. Kannan Umadevi Venkataraju
  6. Pavel Osten
  7. Naoshige Uchida
  8. Mitsuko Watabe-Uchida  Is a corresponding author
  1. Harvard University, United States
  2. University of Massachusetts Amherst, United States
  3. Massachusetts Institute of Technology, United States
  4. Cold Spring Harbor Laboratory, United States

Abstract

Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc.) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense 'clusters' of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs.

Article and author information

Author details

  1. William Menegas

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Joseph F Bergan

    Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    Joseph F Bergan, Yoh Isogai and Joseph Bergan have filed a patent application on OptiView.
  3. Sachie K Ogawa

    RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Yoh Isogai

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Yoh Isogai, Yoh Isogai and Joseph Bergan have filed a patent application on OptiView.
  5. Kannan Umadevi Venkataraju

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Pavel Osten

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  7. Naoshige Uchida

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Naoshige Uchida, Reviewing editor, eLife.
  8. Mitsuko Watabe-Uchida

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    mitsuko@mcb.harvard.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Harvard animal care and use committee (IACUC) protocols (#26-03) of Harvard University. All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2015, Menegas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,944
    views
  • 3,139
    downloads
  • 254
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Menegas
  2. Joseph F Bergan
  3. Sachie K Ogawa
  4. Yoh Isogai
  5. Kannan Umadevi Venkataraju
  6. Pavel Osten
  7. Naoshige Uchida
  8. Mitsuko Watabe-Uchida
(2015)
Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass
eLife 4:e10032.
https://doi.org/10.7554/eLife.10032

Share this article

https://doi.org/10.7554/eLife.10032

Further reading

    1. Neuroscience
    Suelen Pereira, Ivan Tomsic ... Mychael V Lourenco
    Insight

    A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Advance

    Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord. To investigate the effects of such an injury on the operation of the spinal locomotor network, we used our computational model of cat locomotion recently published in eLife (Rybak et al., 2024) to investigate and predict changes in cycle and phase durations following a thoracic lateral hemisection during treadmill locomotion in tied-belt (equal left-right speeds) and split-belt (unequal left-right speeds) conditions. In our simulations, the ‘hemisection’ was always applied to the right side. Based on our model, we hypothesized that following hemisection the contralesional (‘intact’, left) side of the spinal network is mostly controlled by supraspinal drives, whereas the ipsilesional (‘hemisected’, right) side is mostly controlled by somatosensory feedback. We then compared the simulated results with those obtained during experiments in adult cats before and after a mid-thoracic lateral hemisection on the right side in the same locomotor conditions. Our experimental results confirmed many effects of hemisection on cat locomotion predicted by our simulations. We show that having the ipsilesional hindlimb step on the slow belt, but not the fast belt, during split-belt locomotion substantially reduces the effects of lateral hemisection. The model provides explanations for changes in temporal characteristics of hindlimb locomotion following hemisection based on altered interactions between spinal circuits, supraspinal drives, and somatosensory feedback.