Untwisting the Caenorhabditis elegans embryo

  1. Ryan Patrick Christensen  Is a corresponding author
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
  1. National Institutes of Health, United States
  2. Sloan-Kettering Institute, United States
  3. Yale University, United States
  4. Zhejiang University, China
  5. University of Connecticut Health Center, United States

Abstract

The nematode Caenorhabditis elegans possesses a simple embryonic nervous system comprising 222 neurons, a number small enough that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open source untwisting and annotation software which allows the investigation of neurodevelopmental events in post-twitching embryos, and apply them to track the 3D positions of seam cells, neurons, and neurites in multiple elongating embryos. The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an "average" worm embryo. The untwisting and cell tracking capability we demonstrate provides a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

Article and author information

Author details

  1. Ryan Patrick Christensen

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    For correspondence
    ryan.christensen@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Bokinsky

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony Santella

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yicong Wu

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Marquina-Solis

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Min Guo

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ismar Kovacevic

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abhishek Kumar

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Winter

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicole Tashakkori

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Evan McCreedy

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Huafeng Liu

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew McAuliffe

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colon-Ramos

    Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,605
    views
  • 746
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan Patrick Christensen
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
(2015)
Untwisting the Caenorhabditis elegans embryo
eLife 4:e10070.
https://doi.org/10.7554/eLife.10070

Share this article

https://doi.org/10.7554/eLife.10070

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Miguel Martinez-Ara, Federico Comoglio, Bas van Steensel
    Research Article

    Genes are often regulated by multiple enhancers. It is poorly understood how the individual enhancer activities are combined to control promoter activity. Anecdotal evidence has shown that enhancers can combine sub-additively, additively, synergistically, or redundantly. However, it is not clear which of these modes are more frequent in mammalian genomes. Here, we systematically tested how pairs of enhancers activate promoters using a three-way combinatorial reporter assay in mouse embryonic stem cells. By assaying about 69,000 enhancer-enhancer-promoter combinations we found that enhancer pairs generally combine near-additively. This behaviour was conserved across seven developmental promoters tested. Surprisingly, these promoters scale the enhancer signals in a non-linear manner that depends on promoter strength. A housekeeping promoter showed an overall different response to enhancer pairs, and a smaller dynamic range. Thus, our data indicate that enhancers mostly act additively, but promoters transform their collective effect non-linearly.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into “global” and “local” modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - the rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.