Untwisting the Caenorhabditis elegans embryo

  1. Ryan Patrick Christensen  Is a corresponding author
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
  1. National Institutes of Health, United States
  2. Sloan-Kettering Institute, United States
  3. Yale University, United States
  4. Zhejiang University, China
  5. University of Connecticut Health Center, United States

Abstract

The nematode Caenorhabditis elegans possesses a simple embryonic nervous system comprising 222 neurons, a number small enough that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open source untwisting and annotation software which allows the investigation of neurodevelopmental events in post-twitching embryos, and apply them to track the 3D positions of seam cells, neurons, and neurites in multiple elongating embryos. The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an "average" worm embryo. The untwisting and cell tracking capability we demonstrate provides a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

Article and author information

Author details

  1. Ryan Patrick Christensen

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    For correspondence
    ryan.christensen@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Bokinsky

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony Santella

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yicong Wu

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Marquina-Solis

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Min Guo

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ismar Kovacevic

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abhishek Kumar

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Winter

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicole Tashakkori

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Evan McCreedy

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Huafeng Liu

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew McAuliffe

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colon-Ramos

    Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,714
    views
  • 748
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan Patrick Christensen
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
(2015)
Untwisting the Caenorhabditis elegans embryo
eLife 4:e10070.
https://doi.org/10.7554/eLife.10070

Share this article

https://doi.org/10.7554/eLife.10070

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.