1. Computational and Systems Biology
  2. Developmental Biology and Stem Cells
Download icon

Untwisting the Caenorhabditis elegans embryo

  1. Ryan Patrick Christensen Is a corresponding author
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
  1. National Institutes of Health, United States
  2. Sloan-Kettering Institute, United States
  3. Yale University, United States
  4. Zhejiang University, China
  5. University of Connecticut Health Center, United States
Tools and Resources
Cited
8
Views
2,261
Comments
0
Cite as: eLife 2015;4:e10070 doi: 10.7554/eLife.10070

Abstract

The nematode Caenorhabditis elegans possesses a simple embryonic nervous system comprising 222 neurons, a number small enough that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open source untwisting and annotation software which allows the investigation of neurodevelopmental events in post-twitching embryos, and apply them to track the 3D positions of seam cells, neurons, and neurites in multiple elongating embryos. The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an "average" worm embryo. The untwisting and cell tracking capability we demonstrate provides a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

Article and author information

Author details

  1. Ryan Patrick Christensen

    1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    For correspondence
    1. ryan.christensen@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Bokinsky

    1. Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony Santella

    1. Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yicong Wu

    1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Marquina-Solis

    1. Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Min Guo

    1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ismar Kovacevic

    1. Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abhishek Kumar

    1. Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Winter

    1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicole Tashakkori

    1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Evan McCreedy

    1. Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Huafeng Liu

    1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew McAuliffe

    1. Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Mohler

    1. Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colon-Ramos

    1. Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhirong Bao

    1. Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Hari Shroff

    1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Oliver Hobert, Reviewing Editor, Columbia University, United States

Publication history

  1. Received: July 14, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: December 3, 2015 (version 1)
  4. Version of Record published: February 10, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,261
    Page views
  • 552
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology and Stem Cells
    Cyrille Ramond et al.
    Research Article