ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation

  1. Nataliya Nady
  2. Ankit Gupta
  3. Ziyang Ma
  4. Tomek Swigut
  5. Akiko Koide
  6. Shohei Koide
  7. Joanna Wysocka  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. University of Chicago, United States

Abstract

Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family co-repressor Mtgr1, which tightly binds to the pre-SET/SET domains of Prdm14 and co-occupies its genomic targets in mouse ESCs. We generated two monobodies, synthetic binding proteins, targeting the Prdm14 SET domain and demonstrate their utility, respectively, in facilitating crystallization and structure determination of the Prdm14-Mtgr1 complex, or as genetically encoded inhibitor of the Prdm14-Mtgr1 interaction. Structure-guided point mutants and the monobody abrogated the Prdm14-Mtgr1 association and disrupted Prdm14's function in mESC gene expression and PGC formation in vitro. Altogether, our work uncovers the molecular mechanism underlying Prdm14-mediated repression and provides renewable reagents for studying and controlling Prdm14 functions.

Article and author information

Author details

  1. Nataliya Nady

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Ankit Gupta

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    Ankit Gupta, SK and AK are inventors on a patent application filed by the University of Chicago that covers monobody library design (US 13/813,409).The monobodies described in this work are available from SK under a material transfer agreement with the University of Chicago..
  3. Ziyang Ma

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Tomek Swigut

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Akiko Koide

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Shohei Koide

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    Shohei Koide, SK and AK are inventors on a patent application filed by the University of Chicago that covers monobody library design (US 13/813,409).The monobodies described in this work are available from SK under a material transfer agreement with the University of Chicago..
  7. Joanna Wysocka

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    wysocka@stanford.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Version history

  1. Received: July 20, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: November 2, 2015 (version 1)
  4. Version of Record published: February 1, 2016 (version 2)

Copyright

© 2015, Nady et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,818
    Page views
  • 861
    Downloads
  • 46
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nataliya Nady
  2. Ankit Gupta
  3. Ziyang Ma
  4. Tomek Swigut
  5. Akiko Koide
  6. Shohei Koide
  7. Joanna Wysocka
(2015)
ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation
eLife 4:e10150.
https://doi.org/10.7554/eLife.10150

Share this article

https://doi.org/10.7554/eLife.10150

Further reading

    1. Structural Biology and Molecular Biophysics
    Ekaterina Smirnova, Emmanuelle Bignon ... Adam Ben Shem
    Research Article

    Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.

    1. Structural Biology and Molecular Biophysics
    Bernhard Schuster
    Insight

    The surface layer of Sulfolobus acidocaldarius consists of a flexible but stable outer protein layer that interacts with an inner, membrane-bound protein.