Neuroscience: Unveiling hidden sources of noise
In March 2014, a team of cosmologists made headlines around the world when they reported possible evidence for cosmic inflation – an extremely short period during which the universe rapidly expanded immediately after the Big Bang (Ade et al., 2014). However, it later emerged that some of the signal this result was based on had been produced by something seemingly quite insignificant: cosmic dust (Cowen, 2015). This episode underscored how small, apparently innocuous factors can have colossal implications when studying the universe. The same is true in neuroscience, with perhaps even higher stakes.
We are all impacted by changes in our brains, especially in the latter part of our lives (Alzheimer’s Association, 2019). As the global population ages at an unprecedented rate, neuroscientists are leveraging a vast array of tools to confront the complexities of brain aging at every biological scale. When recording brain activity, these researchers must exhibit the same precision demanded of cosmologists, carefully accounting for the various sources of non-neural noise stemming from their instruments, from their lab environment, or from biological signals such as eye movements or skin conductance. Now, in eLife, Fabian Schmidt and colleagues at Paris Lodron University of Salzburg and other institutions in Austria report that cardiac signals may be contaminating recordings thought to be of neural origin (Schmidt et al., 2024). Just as space dust misled cosmologists, electrical activity from the heart might distort our understanding of brain aging by influencing what is thought to be purely ‘neural’ data.
To understand these results, it is important to know that brain activity is composed of electrical signals that are either periodic (rhythmic) or aperiodic (non-rhythmic). Periodic or ‘neural’ oscillations occur at regular intervals, showing up as consistent patterns or waves. Extensively studied over the past century, these are linked to cognitive processes, perception, and various disease states (Buzsáki and Draguhn, 2004). Aperiodic activity, in contrast, does not follow a predictable pattern. Historically, it has largely been treated as noise to be averaged away in analyses, but mounting evidence suggests it may in fact be a signal in its own right. Crucially, previous studies have shown that neural aperiodic activity changes with age (Donoghue et al., 2020). However, cardiac signals contain both periodic and aperiodic components as well.
The work by Schmidt et al., which relied on datasets from various institutions, involved examining electrocardiograms (ECG) as well as neural data from electroencephalography (EEG) and resting state magnetoencephalography (MEG) – 1104 and 1282 recordings, respectively – obtained from individuals aged 18–92. The team extracted the aperiodic signal from both the neural and cardiac datasets and explored how some of its features evolved with age.
Their analyses revealed that cardiac artifacts significantly influenced the age-related changes in aperiodic activity detected in brain recordings. In fact, certain MEG and EEG changes could be attributed to the aging of the heart rather than of the brain, as had previously been thought.
Schmidt et al. then showed that attempting to ‘clean’ this cardiac contamination using a standard method called independent component analysis was insufficient. Despite the approach attempting to separate cardiac contributions from the neural data, residual aperiodic signals from the heart could still be detected in MEG and EEG recordings thought to capture only brain activity.
Moreover, results across different datasets pointed to a complex pattern of age-related changes in aperiodic neural activity. Researchers often examine how much of the electrical activity (or ‘power’) from the brain or heart is concentrated across various frequencies – with the slope of the resulting curve, which is how aperiodic activity is often measured, usually changing with age. In the brain, this curve is steeper in youth (as lower frequencies concentrate more power) and flattens in old age, possibly due to an increase in neural noise (Voytek et al., 2015; Figure 1). This effect could potentially be driven by the heart, as Schmidt et al. found a similar age-dependent flattening pattern in the cardiac aperiodic activity leaking into brain recordings. However, an opposite pattern emerged in one of the ECG datasets, with cardiac aperiodic activity steepening rather than flattening with age in a specific lower frequency range (0.25–12 Hz). This observation was particularly surprising given the flattening trend seen in other frequency ranges and datasets; it highlights how different physiological processes may drive age-related changes in aperiodic activity in a frequency-dependent and nuanced manner.

Age-related changes in aperiodic neural activity may be driven in part by aperiodic cardiac activity.
Left. While often presumed to reflect purely neural sources, brain recordings are in fact composed of many independent components, which include physiological signals (both from true neural signals and from cardiac activity or other non-neural sources; top) as well as non-physiological sources of noise (such as room or line noise; bottom). Right. Calculating the power of neural activity across many frequencies results in what is known as a power spectrum, with neural activity (or ‘power’; y axis) plotted against frequency (x axis). From the power spectrum, it is possible to see both the periodic component of the signal (the wave-like element inside the red rectangle) and the aperiodic component (light blue dotted line). The slope of the aperiodic component can vary with age, being steeper in young adults and becoming flatter with age. Schmidt et al. demonstrate that the aperiodic component of a cardiac signal (not shown) can similarly ‘flatten’ with age. This finding suggests that cardiac artifacts in MEG and EEG recordings may partly contribute to the age-related neural changes previously ascribed to the brain getting older. MEG: magnetoencephalography; EEG: electroencephalography.
Age and disease are not alone in affecting aperiodic activity, as cognitive and behavioral factors can also have an influence. For instance, recordings show that neural aperiodic activity flattens when subjects perform cognitive tasks (Preston et al., 2022). Schmidt et al. detected a similar effect in the cardiac aperiodic activity of participants temporarily holding information in mind during a working memory task, suggesting that cardiac influence on neural changes may extend beyond aging.
Where do we go from here? The findings by Schmidt et al. underscore the importance of developing more sophisticated models that can accurately account for all potential sources of noise. By doing so, we can avoid being misled by our own dust; instead, we can move beyond basic observations about ‘something happening in the brain’ and towards a deeper physiological understanding of how neural circuits are changing and interacting with other age-related bodily processes.
References
-
Detection of B-mode polarization at degree angular scales by BICEP2Physical Review Letters 112:241101.https://doi.org/10.1103/PhysRevLett.112.241101
-
2019 Alzheimer’s disease facts and figuresAlzheimer’s & Dementia 15:321–387.https://doi.org/10.1016/j.jalz.2019.01.010
-
Neuronal oscillations in cortical networksScience 304:1926–1929.https://doi.org/10.1126/science.1099745
-
Parameterizing neural power spectra into periodic and aperiodic componentsNature Neuroscience 23:1655–1665.https://doi.org/10.1038/s41593-020-00744-x
-
Age-related changes in 1/f neural electrophysiological noiseThe Journal of Neuroscience 35:13257–13265.https://doi.org/10.1523/JNEUROSCI.2332-14.2015
Article and author information
Author details
Publication history
Copyright
© 2024, Fitzgerald et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,336
- views
-
- 89
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The perception of innocuous temperatures is crucial for thermoregulation. The TRP ion channels TRPV1 and TRPM2 have been implicated in warmth detection, yet their precise roles remain unclear. A key challenge is the low prevalence of warmth-sensitive sensory neurons, comprising fewer than 10% of rodent dorsal root ganglion (DRG) neurons. Using calcium imaging of >20,000 cultured mouse DRG neurons, we uncovered distinct contributions of TRPV1 and TRPM2 to warmth sensitivity. TRPV1’s absence – and to a lesser extent absence of TRPM2 – reduces the number of neurons responding to warmth. Additionally, TRPV1 mediates the rapid, dynamic response to a warmth challenge. Behavioural tracking in a whole-body thermal preference assay revealed that these cellular differences shape nuanced thermal behaviours. Drift diffusion modelling of decision-making in mice exposed to varying temperatures showed that TRPV1 deletion impairs evidence accumulation, reducing the precision of thermal choice, while TRPM2 deletion increases overall preference for warmer environments that wildtype mice avoid. It remains unclear whether TRPM2 in DRG sensory neurons or elsewhere mediates thermal preference. Our findings suggest that different aspects of thermal information, such as stimulation speed and temperature magnitude, are encoded by distinct TRP channel mechanisms.
-
- Neuroscience
Munc13 plays a crucial role in short-term synaptic plasticity by regulating synaptic vesicle (SV) exocytosis and neurotransmitter release at the presynaptic terminals. However, the intricate mechanisms governing these processes have remained elusive due to the presence of multiple functional domains within Munc13, each playing distinct roles in neurotransmitter release. Here, we report a coordinated mechanism in the Caenorhabditis elegans Munc13 homolog UNC-13 that controls the functional switch of UNC-13 during synaptic transmission. Mutations disrupting the interactions of C1 and C2B with diacylglycerol (DAG) and phosphatidylinositol 4,5-bisphosphate (PIP2) on the plasma membrane induced the gain-of-function state of UNC-13L, the long UNC-13 isoform, resulting in enhanced SV release. Concurrent mutations in both domains counteracted this enhancement, highlighting the functional interdependence of C1 and C2B. Intriguingly, the individual C1 and C2B domains exhibited significantly stronger facilitation of SV release compared to the presence of both domains, supporting a mutual inhibition of C1 and C2B under basal conditions. Moreover, the N-terminal C2A and X domains exhibited opposite regulation on the functional switch of UNC-13L. Furthermore, we identified the polybasic motif in the C2B domain that facilitates SV release. Finally, we found that disruption of C1 and C2B membrane interaction in UNC-13S, the short isoform, leads to functional switch between gain-of-function and loss-of-function. Collectively, our findings provide a novel mechanism for SV exocytosis wherein UNC-13 undergoes functional switches through the coordination of its major domains, thereby regulating synaptic transmission and short-term synaptic plasticity.