Microbiome: Balancing microbial composition through diet
The gut of animals is a complex ecosystem consisting of trillions of bacteria and other microorganisms that are unique to every individual. Infants can inherit their first gut bacteria through vaginal birth and breastfeeding, and the microbiome is later reshaped through diet (Ames et al., 2023).
The gut microbiome helps to break down and enhance the absorption of nutrients like carbohydrates and lipids but the role of gut bacteria in protein absorption is less clear. Previous research has shown that in neonatal mammals and fishes, specialized cells lining the gut, called enterocytes, are essential for absorbing protein (Park et al., 2019). Now, in eLife, Michel Bagnat, John Rawls and colleagues from Duke University, University of North Carolina and University of Alabama at Birmingham – including Laura Childers as first author – report how microbes affect protein absorption by enterocytes (Childers et al., 2024).
To follow the fate of proteins in a living organism, Childers et al. used transparent zebrafish larvae to visualize fluorescent proteins in their journey through the gut. The team fed the zebrafish fluorescent protein and isolated all the lysosome-rich enterocytes, or LREs, that took up the glowing cargo, and which had been previously shown to take up protein efficiently. They used various techniques to manipulate zebrafish microbiomes. Fish either had a complete gut microbiome (called conventionally reared) or no gut microbiome (germ-free): germ-free animals were further inoculated with single bacterial strains to generate fish with only one type of bacteria in their gut. These monoassociated fish allowed the researchers to measure precisely how specific bacteria affected protein uptake in the zebrafish gut. They then looked at gene expression in each of these different scenarios.
The results showed that collectively, resident microbes slowed down protein uptake and degradation in LREs. Moreover, the LREs in conventionally reared fish upregulated genes involved in immune responses and bacteria-sensing and downregulated genes linked to the degradation of proteins. To identify the impact of specific bacteria on LREs, Childers et al. tracked the fates of the fluorescent proteins in monoassociated fish and identified a bacterial strain, Acinetobacter calcoaceticus, which only slightly reduced protein uptake compared to germ-free fish, while the Vibrio cholerae strain significantly decreased how much protein the LREs absorbed.
To explore why the fish colonized by V. cholerae absorbed protein so poorly, Childers et al. analyzed the protein uptake machinery of LREs. This revealed that expression of genes encoding the protein uptake machinery in V. cholerae monoassociated fish were reduced compared to A. calcoaceticus-monoassociated or germ-free animals. Why the expression of these genes changed in the presence of different bacteria remains to be determined. The V. cholerae strain used can cause a lot of damage to enterocytes (Ngo et al., 2024). It is possible that LREs down-regulate protein uptake in the presence of harmful bacteria like V. cholerae to avoid taking up toxic proteins. Alternatively, the LREs of V. cholerae-colonized fish may simply be slightly impaired and less capable of protein uptake. This suggests that individual bacterial strains can influence how much protein gets absorbed by enterocytes.
Childers et al. also explored how the amount of protein remaining in the gut tube affected the composition of the gut microbiome. When they fed zebrafish a low protein diet in comparison to the normal diet, they noted significant shifts in the types of bacteria found in the gut, especially in mutant zebrafish with defects in their protein uptake machinery. Fish fed a low protein diet had less diverse microbiomes.
Understanding what regulates the protein uptake machinery will shed new light on diseases of malnutrition. For example, children with kwashiorkor disease suffer from protein malabsorption (Williams, 2003). Their gut microbiomes appear to play a role in the disease because feces from children with kwashiorkor can cause similar symptoms when introduced into germ-free mice (Smith et al., 2013). Perhaps the gut bacteria of kwashiorkor patients inhibit protein uptake similarly to V. cholerae in zebrafish.
Childers et al. show that gut microbes shape the fate of protein in the gut. Future research will explore how specific bacteria affect the protein uptake machinery and how protein availability in the gut affects the microbiome. Already, the findings support the idea that correcting defective microbiomes could be a promising strategy for treating childhood malnutrition (Barratt et al., 2022). The findings also offer a cautionary lesson: dramatically changing the protein content of your diet, for example by consuming protein shakes, could backfire by changing the microbiome, possibly in a way that impairs protein uptake processes in the gut.
References
-
Gut microbiome development and childhood undernutritionCell Host & Microbe 30:617–626.https://doi.org/10.1016/j.chom.2022.04.002
-
Kwashiorkor: a nutritional disease of children associated with a maize diet. 1935Bulletin of the World Health Organization 81:912–913.
Article and author information
Author details
Publication history
Copyright
© 2024, Acuff and Guillemin
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 698
- views
-
- 72
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Stem Cells and Regenerative Medicine
Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.
-
- Cell Biology
- Medicine
Background:
It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.
Methods:
Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.
Results:
PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.
Conclusions:
This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.
Funding:
This study was supported by the National Natural Science Foundation of China (82172474).