1. Hubertus Haas  Is a corresponding author
  1. Medical University of Innsbruck, Austria

Fungi affect our lives in many different ways, both positive and negative. One of the reasons for this is that most fungi produce a multitude of small organic molecules called secondary metabolites. Different species employ a strikingly diverse arsenal of secondary metabolites, most of which are released into the environment (Sanchez et al., 2012). Secondary metabolites are not directly required to ensure the growth of the organism, but confer an advantage under specific environmental conditions.

Fungi use secondary metabolites to defend against predators and competitors, for chemical communication, or in the case of pathogenic fungi, to manipulate their animal and plant hosts (Brakhage et al., 2013). Secondary metabolism is therefore likely to be shaped to a large extent by interactions with other organisms. For example, fungi secrete enzymes to digest their food, which allows them to grow on virtually any organic matter, but also means that the products of their digestion are in principle a free meal for other organisms. And by secreting secondary metabolites that target these organisms, fungi are able to defend their niche to avoid competitors taking advantage of the available food.

Well-known examples of secondary metabolites produced by fungi are the poisonous food contaminant aflatoxin, the antibiotic penicillin and the anticancer drug taxol. These molecules illustrate the negative and positive effects of secondary metabolites on humans, and underline their outstanding potential for medicinal use. However, it is not known what roles most of these molecules play in the lives of the fungi that produce them. Moreover, most secondary metabolites are not produced when the fungi are grown in the laboratory, which makes it difficult to characterize them. Now in eLife, Matthias Brock and co-workers – including Markus Gressler as first author – report a new role for a major secondary metabolite called terrein, and characterize the environmental stimuli that induce the mold Aspergillus terreus to produce it (Figure 1; Gressler et al., 2015).

Environmental signals activate production of terrein by the mold Aspergillus terreus to improve its competitiveness.

To adapt to changing environmental conditions and different ecological niches, microorganisms need to be able to sense and respond to environmental signals. Gressler et al. identified three independent signals that stimulate production of the compound terrein by Aspergillus terreus – nitrogen starvation, methionine, and iron starvation. In this mold's natural niche within plants and in the soil surrounding plant roots, terrein is a chemical weapon used to inhibit the growth of bacteria, plants and other fungi, but also helps to improve iron supply to the producer.

A. terreus is a common soil-borne fungus that feeds on dead organic material, but is also able to invade plants and cause life-threatening infections in humans with weakened immune systems. Genome analysis indicated that this fungus might produce more than 68 secondary metabolites, although only 14—including the cholesterol-lowering drug lovastatin—have been identified so far (Guo and Wang, 2014). The compound terrein was first described 80 years ago, but how A. terreus makes terrein was only resolved in 2014 by the Brock group (Zaehle et al., 2014). Terrein was previously shown to be harmful to plant cells as it inhibits the germination of seeds and causes lesions on plant surfaces, and probably helps the fungus to colonize its host.

Based on the observation that potato extract (an ingredient of a standard medium used for culturing fungi) activates the production of terrein, Gressler et al. – who are based at the Hans Knoell Institute, Friedrich Schiller University and Nottingham University – systematically characterized how different conditions impact terrein production. This analysis revealed that the genes that encode the terrein biosynthetic pathway are activated by three independent environmental stimuli: nitrogen starvation, iron starvation, and the presence of the amino acid methionine. These conditions are typically found in the plant and the plant root area, known as the rhizosphere, and are used by the mold to sense these niches.

Next, by genetic engineering of the mold, Gressler et al. identified three transcription factors that activate genes in response to environmental signals. Previous studies have revealed the roles of these regulators in altering the production of primary metabolites – which are required for normal growth and reproduction – in response to stress and the availability of nitrogen and iron (Haas, 2012; Tudzynski, 2014). However, it is not known how the mold perceives the methionine signal. Nitrogen and iron also regulate the production of other secondary metabolites (Tudzynski, 2014; Wiemann et al., 2014), suggesting that these environmental cues are often used to adjust secondary metabolism. The complex environmental control of terrein production revealed by Gressler et al. represents a prime example of how microorganisms adapt their secondary metabolism to the niche they inhabit.

In addition to its ability to inhibit the growth of plants, it has been reported that terrein can inhibit the growth of bacteria, fungi and mammalian cells, and that it can also act as an antioxidant and anti-inflammatory (Zaehle et al., 2014). Now, Gressler et al. have discovered that terrein supports iron uptake by the fungus that produces it, but inhibits the growth of even closely related molds. This clearly indicates that terrein improves the competiveness of the producer. It will be exciting to learn how terrein is able to influence many different biological processes in different organisms, and how the producer protects itself against this molecule.

References

Article and author information

Author details

  1. Hubertus Haas

    Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    hubertus.haas@i-med.ac.at
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2015, Haas

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,985
    views
  • 241
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hubertus Haas
(2015)
Microbial Ecology: How to trigger a fungal weapon
eLife 4:e10504.
https://doi.org/10.7554/eLife.10504

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.