Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe

  1. Anneke Hibbel
  2. Aliona Bogdanova
  3. Mohammed Mahamdeh
  4. Anita Jannasch
  5. Marko Storch
  6. Erik Schäffer
  7. Dimitris Liakopoulos
  8. Jonathon Howard  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Yale University, United States
  3. Imperial College London, United Kingdom
  4. Eberhard-Karls-Universität Tübingen, Germany
  5. Centre de Recherche de Biochimie Macromoléculaire, France

Abstract

The size and position of mitotic spindles is determined by the lengths of their constituent microtubules. Regulation of microtubule length requires feedback to set the balance between growth and shrinkage. Whereas negative feedback mechanisms for microtubule length control, based on depolymerizing kinesins and severing proteins, have been studied extensively, positive feedback mechanisms are not known. Here we report that the budding yeast kinesin Kip2 is a microtubule polymerase and catastrophe inhibitor in vitro that uses its processive motor activity as part of a feedback loop to further promote microtubule growth. Positive feedback arises because longer microtubules bind more motors, which walk to the ends where they further reinforce growth and inhibit catastrophe. We propose that positive feedback, common in biochemical pathways to switch between signaling states, can also be used in a mechanical signaling pathway to switch between structural states, in this case between short and long polymers.

Article and author information

Author details

  1. Anneke Hibbel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Aliona Bogdanova

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohammed Mahamdeh

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Jannasch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marko Storch

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Erik Schäffer

    Zentrum für Molekularbiologie der Pflanzen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Dimitris Liakopoulos

    Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonathon Howard

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    jonathon.howard@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: August 3, 2015
  2. Accepted: November 17, 2015
  3. Accepted Manuscript published: November 18, 2015 (version 1)
  4. Version of Record published: February 9, 2016 (version 2)

Copyright

© 2015, Hibbel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,892
    views
  • 726
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anneke Hibbel
  2. Aliona Bogdanova
  3. Mohammed Mahamdeh
  4. Anita Jannasch
  5. Marko Storch
  6. Erik Schäffer
  7. Dimitris Liakopoulos
  8. Jonathon Howard
(2015)
Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe
eLife 4:e10542.
https://doi.org/10.7554/eLife.10542

Share this article

https://doi.org/10.7554/eLife.10542

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.