Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

  1. Radim Osicka  Is a corresponding author
  2. Adriana Osickova
  3. Shakir Hasan
  4. Ladislav Bumba
  5. Jiri Cerny
  6. Peter Sebo
  1. Institute of Microbiology of the CAS, Czech Republic
  2. Institute of Biotechnology of the CAS, Czech Republic

Abstract

Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.

Article and author information

Author details

  1. Radim Osicka

    Institute of Microbiology of the CAS, Prague, Czech Republic
    For correspondence
    osicka@biomed.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriana Osickova

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Shakir Hasan

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Ladislav Bumba

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiri Cerny

    Institute of Biotechnology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Sebo

    Institute of Microbiology of the CAS, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Osicka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 403
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radim Osicka
  2. Adriana Osickova
  3. Shakir Hasan
  4. Ladislav Bumba
  5. Jiri Cerny
  6. Peter Sebo
(2015)
Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3
eLife 4:e10766.
https://doi.org/10.7554/eLife.10766

Share this article

https://doi.org/10.7554/eLife.10766

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.

    1. Biochemistry and Chemical Biology
    Gabriella O Estevam, Edmond Linossi ... James S Fraser
    Research Article

    Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.