Active contraction of microtubule networks

  1. Peter J Foster  Is a corresponding author
  2. Sebastian Fürthauer
  3. Michael J Shelley
  4. Daniel J Needleman
  1. Harvard University, United States
  2. New York University, United States

Abstract

Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large scale behaviors of these systems. Here we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.

Article and author information

Author details

  1. Peter J Foster

    John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, United States
    For correspondence
    peterfoster@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Sebastian Fürthauer

    Courant Institute of Mathematical Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J Shelley

    Courant Institute of Mathematical Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel J Needleman

    John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#28-18) of Harvard University.

Copyright

© 2015, Foster et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,356
    views
  • 1,055
    downloads
  • 121
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter J Foster
  2. Sebastian Fürthauer
  3. Michael J Shelley
  4. Daniel J Needleman
(2015)
Active contraction of microtubule networks
eLife 4:e10837.
https://doi.org/10.7554/eLife.10837

Share this article

https://doi.org/10.7554/eLife.10837