Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons

  1. Sebastian Poliak
  2. Daniel Morales
  3. Louis-Philippe Croteau
  4. Dayana Krawchuk
  5. Elena Palmesino
  6. Susan Morton
  7. Cloutier Jean-François
  8. Frederic Charron
  9. Matthew B Dalva
  10. Susan L Ackerman
  11. Tzu-Jen Kao
  12. Artur Kania  Is a corresponding author
  1. Columbia University, United States
  2. Institut de recherches cliniques de Montreal, Canada
  3. Montreal Neurological Institute, Canada
  4. Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, United States
  5. Howard Hughes Medical Institute, The Jackson Laboratory, United States
  6. Taipei Medical University, Taiwan

Abstract

During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both, attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin-ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways.

Article and author information

Author details

  1. Sebastian Poliak

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Morales

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Louis-Philippe Croteau

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dayana Krawchuk

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena Palmesino

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Susan Morton

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cloutier Jean-François

    Montreal Neurological Institute, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Frederic Charron

    Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew B Dalva

    Thomas Jefferson University, Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Susan L Ackerman

    Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tzu-Jen Kao

    Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  12. Artur Kania

    Neural Circuit Development Lab, Institut de recherches cliniques de Montreal, Montreal, Canada
    For correspondence
    artur.kania@ircm.qc.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care Committee at the Institut de Recherches Cliniques de Montréal, in accordance with the regulations of the Canadian Council on Animal Care. The following protocol reference numbers were used: 2005-03, 2008-18, 2009-10, 2011-30 and 2012-22.

Copyright

© 2015, Poliak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,337
    views
  • 802
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Poliak
  2. Daniel Morales
  3. Louis-Philippe Croteau
  4. Dayana Krawchuk
  5. Elena Palmesino
  6. Susan Morton
  7. Cloutier Jean-François
  8. Frederic Charron
  9. Matthew B Dalva
  10. Susan L Ackerman
  11. Tzu-Jen Kao
  12. Artur Kania
(2015)
Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons
eLife 4:e10841.
https://doi.org/10.7554/eLife.10841

Share this article

https://doi.org/10.7554/eLife.10841

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.