Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons

  1. Sebastian Poliak
  2. Daniel Morales
  3. Louis-Philippe Croteau
  4. Dayana Krawchuk
  5. Elena Palmesino
  6. Susan Morton
  7. Cloutier Jean-François
  8. Frederic Charron
  9. Matthew B Dalva
  10. Susan L Ackerman
  11. Tzu-Jen Kao
  12. Artur Kania  Is a corresponding author
  1. Columbia University, United States
  2. Institut de recherches cliniques de Montreal, Canada
  3. Montreal Neurological Institute, Canada
  4. Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, United States
  5. Howard Hughes Medical Institute, The Jackson Laboratory, United States
  6. Taipei Medical University, Taiwan

Abstract

During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both, attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin-ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways.

Article and author information

Author details

  1. Sebastian Poliak

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Morales

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Louis-Philippe Croteau

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dayana Krawchuk

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena Palmesino

    Neural Circuit Development Laboratory, Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Susan Morton

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cloutier Jean-François

    Montreal Neurological Institute, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Frederic Charron

    Institut de recherches cliniques de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew B Dalva

    Thomas Jefferson University, Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Susan L Ackerman

    Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tzu-Jen Kao

    Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  12. Artur Kania

    Neural Circuit Development Lab, Institut de recherches cliniques de Montreal, Montreal, Canada
    For correspondence
    artur.kania@ircm.qc.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care Committee at the Institut de Recherches Cliniques de Montréal, in accordance with the regulations of the Canadian Council on Animal Care. The following protocol reference numbers were used: 2005-03, 2008-18, 2009-10, 2011-30 and 2012-22.

Copyright

© 2015, Poliak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,296
    views
  • 796
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Poliak
  2. Daniel Morales
  3. Louis-Philippe Croteau
  4. Dayana Krawchuk
  5. Elena Palmesino
  6. Susan Morton
  7. Cloutier Jean-François
  8. Frederic Charron
  9. Matthew B Dalva
  10. Susan L Ackerman
  11. Tzu-Jen Kao
  12. Artur Kania
(2015)
Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons
eLife 4:e10841.
https://doi.org/10.7554/eLife.10841

Share this article

https://doi.org/10.7554/eLife.10841

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.