The kinetochore prevents centromere-proximal crossover recombination during meiosis

  1. Nadine Vincenten
  2. Lisa-Marie Kuhl
  3. Isabel Lam
  4. Ashwini Oke
  5. Alastair RW Kerr
  6. Andreas Hochwagen
  7. Jennifer Fung
  8. Scott Keeney
  9. Gerben Vader
  10. Adèle L Marston  Is a corresponding author
  1. The University of Edinburgh, United Kingdom
  2. Max Planck Institute of Molecular Physiology, Germany
  3. Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, United States
  4. University of California, San Francisco, United States
  5. New York University, United States

Abstract

During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes.

Article and author information

Author details

  1. Nadine Vincenten

    The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa-Marie Kuhl

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Isabel Lam

    Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ashwini Oke

    Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alastair RW Kerr

    The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreas Hochwagen

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Fung

    Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott Keeney

    Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gerben Vader

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Adèle L Marston

    The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    adele.marston@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Vincenten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,400
    views
  • 1,012
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadine Vincenten
  2. Lisa-Marie Kuhl
  3. Isabel Lam
  4. Ashwini Oke
  5. Alastair RW Kerr
  6. Andreas Hochwagen
  7. Jennifer Fung
  8. Scott Keeney
  9. Gerben Vader
  10. Adèle L Marston
(2015)
The kinetochore prevents centromere-proximal crossover recombination during meiosis
eLife 4:e10850.
https://doi.org/10.7554/eLife.10850

Share this article

https://doi.org/10.7554/eLife.10850

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.