Opposing roles of nuclear receptor HNF4α isoforms in colitis and colitis-associated colon cancer

  1. Karthikeyani Chellappa
  2. Poonamjot Deol
  3. Jane R Evans
  4. Linh M Vuong
  5. Gang Chen
  6. Nadege Briançon
  7. Eugene Bolotin
  8. Christian Lytle
  9. Meera G Nair
  10. Frances M Sladek  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Riverside, United States
  3. Harvard Medical School, United States
  4. University of California Riverside, United States

Abstract

HNF4α has been implicated in colitis and colon cancer in humans but the role of the different HNF4α isoforms expressed from the two different promoters (P1 and P2) active in the colon is not clear. Here, we show that P1-HNF4α is expressed primarily in the differentiated compartment of the mouse colonic crypt and P2-HNF4α in the proliferative compartment. Exon swap mice that express only P1- or only P2-HNF4α have different colonic gene expression profiles, interacting proteins, cellular migration, ion transport and epithelial barrier function. The mice also exhibit altered susceptibilities to experimental colitis (DSS) and colitis-associated colon cancer (AOM+DSS). When P2-HNF4α-only mice (which have elevated levels of the cytokine resistin-like β, RELMβ, and are extremely sensitive to DSS) are crossed with Retnlb-/- mice, they are rescued from mortality. Furthermore, P2-HNF4α binds and preferentially activates the RELMβ promoter. In summary, HNF4α isoforms perform non-redundant functions in the colon under conditions of stress, underscoring the importance of tracking them both in colitis and colon cancer.

Article and author information

Author details

  1. Karthikeyani Chellappa

    Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Poonamjot Deol

    Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jane R Evans

    Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Linh M Vuong

    Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gang Chen

    Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadege Briançon

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eugene Bolotin

    Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christian Lytle

    Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meera G Nair

    Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Frances M Sladek

    Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, United States
    For correspondence
    frances.sladek@ucr.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Care and treatment of animals were in strict accordance with guidelines from the University of California Riverside Institutional Animal Care and Use Committee. Institutional protocol number A200140014.

Copyright

© 2016, Chellappa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,163
    views
  • 636
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthikeyani Chellappa
  2. Poonamjot Deol
  3. Jane R Evans
  4. Linh M Vuong
  5. Gang Chen
  6. Nadege Briançon
  7. Eugene Bolotin
  8. Christian Lytle
  9. Meera G Nair
  10. Frances M Sladek
(2016)
Opposing roles of nuclear receptor HNF4α isoforms in colitis and colitis-associated colon cancer
eLife 5:e10903.
https://doi.org/10.7554/eLife.10903

Share this article

https://doi.org/10.7554/eLife.10903

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.