Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

Abstract

Women live on average longer than men, but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the ageing gut in Drosophila. The intestinal epithelium of the ageing female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in ageing females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like ageing pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction.

Article and author information

Author details

  1. Jennifer C Regan

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    For correspondence
    j.regan@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Mobina Khericha

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam J Dobson

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ekin Bolukbasi

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nattaphong Rattanavirotkul

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Linda Partridge

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Regan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,788
    views
  • 1,710
    downloads
  • 200
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer C Regan
  2. Mobina Khericha
  3. Adam J Dobson
  4. Ekin Bolukbasi
  5. Nattaphong Rattanavirotkul
  6. Linda Partridge
(2016)
Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction
eLife 5:e10956.
https://doi.org/10.7554/eLife.10956

Share this article

https://doi.org/10.7554/eLife.10956

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.

    1. Developmental Biology
    Wei Yan
    Editorial

    The articles in this special issue highlight the diversity and complexity of research into reproductive health, including the need for a better understanding of the fundamental biology of reproduction and for new treatments for a range of reproductive disorders.