TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export

  1. António J M Santos
  2. Ishier Raote
  3. Margherita Scarpa
  4. Nathalie Brouwers
  5. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain

Abstract

Previously we showed that membrane fusion is required for TANGO1-dependent export of procollagen VII from the endoplasmic reticulum (ER) (Nogueira et al., 2014). Along with the t-SNARE Syntaxin 18, we now reveal the complete complement of SNAREs required in this process, t-SNAREs BNIP1 and USE1, and v-SNARE YKT6. TANGO1 recruits YKT6-containing ER Golgi Intermediate Compartment (ERGIC) membranes to procollagen VII-enriched patches on the ER. Moreover residues 1214-1396, that include the first coiled coil of TANGO1, specifically recruit ERGIC membranes even when targeted to mitochondria. TANGO1 is thus pivotal in concentrating procollagen VII in the lumen and recruiting ERGIC membranes on the cytoplasmic surface of the ER. Our data reveal that growth of a mega transport carrier for collagen export from the ER is not by acquisition of a larger patch of ER membrane, but instead by addition of ERGIC membranes to procollagen-enriched domains of the ER by a TANGO-mediated process.

Article and author information

Author details

  1. António J M Santos

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Ishier Raote

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Margherita Scarpa

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Nathalie Brouwers

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  5. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Senior editor, eLife.

Copyright

© 2015, Santos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,734
    views
  • 937
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. António J M Santos
  2. Ishier Raote
  3. Margherita Scarpa
  4. Nathalie Brouwers
  5. Vivek Malhotra
(2015)
TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export
eLife 4:e10982.
https://doi.org/10.7554/eLife.10982

Share this article

https://doi.org/10.7554/eLife.10982

Further reading

    1. Cell Biology
    Shixuan Liu, Ceryl Tan ... Ran Kafri
    Research Advance

    Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018). While we previously identified the p38 MAPK pathway as a key regulator of the mammalian cell size checkpoint (S. Liu et al., 2018), the mechanism of size-dependent growth rate regulation has remained elusive. Here, we quantified global rates of protein synthesis and degradation in cells of varying sizes, both under unperturbed conditions and in response to perturbations that trigger size-dependent compensatory growth slowdown. We found that protein synthesis rates scale proportionally with cell size across cell cycle stages and experimental conditions. In contrast, oversized cells that undergo compensatory growth slowdown exhibit a superlinear increase in proteasome-mediated protein degradation, with accelerated protein turnover per unit mass, suggesting activation of the proteasomal degradation pathway. Both nascent and long-lived proteins contribute to the elevated protein degradation during compensatory growth slowdown, with long-lived proteins playing a crucial role at the G1/S transition. Notably, large G1/S cells exhibit particularly high efficiency in protein degradation, surpassing that of similarly sized or larger cells in S and G2, coinciding with the timing of the most stringent size control in animal cells. These results collectively suggest that oversized cells reduce their growth efficiency by activating global proteasome-mediated protein degradation to promote cell size homeostasis.

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.