Sampling the conformational space of the catalytic subunit of human γ-secretase

  1. Xiao-chen Bai
  2. Eeson Rajendra
  3. Guanghui Yang
  4. Yigong Shi
  5. Sjors HW Scheres  Is a corresponding author
  1. Medical Research Council, United Kingdom
  2. Tsinghua University, China
  3. Tsinghua university, China

Abstract

Human γ-Secretase is an intra-membrane protease that cleaves many substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain.

Article and author information

Author details

  1. Xiao-chen Bai

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Eeson Rajendra

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Guanghui Yang

    Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    No competing interests declared.
  4. Yigong Shi

    Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua university, Beijing, China
    Competing interests
    No competing interests declared.
  5. Sjors HW Scheres

    MRC laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    Sjors HW Scheres, Reviewing editor, eLife.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: August 27, 2015
  2. Accepted: November 30, 2015
  3. Accepted Manuscript published: December 1, 2015 (version 1)
  4. Version of Record published: January 7, 2016 (version 2)

Copyright

© 2015, Bai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,066
    Page views
  • 2,809
    Downloads
  • 422
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-chen Bai
  2. Eeson Rajendra
  3. Guanghui Yang
  4. Yigong Shi
  5. Sjors HW Scheres
(2015)
Sampling the conformational space of the catalytic subunit of human γ-secretase
eLife 4:e11182.
https://doi.org/10.7554/eLife.11182

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Nina Gubensäk, Theo Sagmeister ... Tea Pavkov-Keller
    Research Article

    The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies e.g. bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Dasvit Shetty, Linda J Kenney
    Research Article Updated

    The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.