Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function

  1. Ravi Vijayvargia
  2. Raquel Epand
  3. Alexander Leitner
  4. Tae-Yang Jung
  5. Baehyun Shin
  6. Roy Jung
  7. Alejandro Lloret
  8. Randy Singh Atwal
  9. Hyeongseok Lee
  10. Jong-Min Lee
  11. Ruedi Aebersold
  12. Hans Hebert
  13. Ji-Joon Song
  14. Ihn Sik Seong  Is a corresponding author
  1. The Maharaja Sayajirao University of Baroda, India
  2. McMaster University, Canada
  3. Eidgenössische Technische Hochschule Zürich, Switzerland
  4. Korea Advanced Institute of Science and Technology, Republic of Korea
  5. Massachusetts General Hospital, United States
  6. Universidad Autónoma de Querétaro, Mexico
  7. Karolinska Institute, Sweden

Abstract

The polyglutamine expansion in huntingtin protein causes Huntington's disease. Here, we investigated structural and biochemical properties of huntingtin and the effect of the polyglutamine expansion using various biophysical experiments including circular dichroism, single-particle electron microscopy and cross-linking mass spectrometry. Huntingtin is likely composed of five distinct domains and adopts a spherical α-helical solenoid where the amino-terminal and carboxyl-terminal regions fold to contain a circumscribed central cavity. Interestingly we showed that the polyglutamine expansion increases α-helical properties of huntingtin and affects the intramolecular interactions among the domains. Our work delineates the structural characteristics of full-length huntingtin, which are affected by the polyglutamine expansion, and provides an elegant solution to the apparent conundrum of how the extreme amino-terminal polyglutamine tract confers a novel property on huntingtin, causing the disease.

Article and author information

Author details

  1. Ravi Vijayvargia

    Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Raquel Epand

    Biochemical ad Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Leitner

    Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Tae-Yang Jung

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Baehyun Shin

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roy Jung

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alejandro Lloret

    Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Randy Singh Atwal

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hyeongseok Lee

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Jong-Min Lee

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Hans Hebert

    Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Ji-Joon Song

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. Ihn Sik Seong

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    For correspondence
    iseong@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bart De Strooper, VIB Center for the Biology of Disease, KU Leuven, Belgium

Version history

  1. Received: August 29, 2015
  2. Accepted: March 13, 2016
  3. Accepted Manuscript published: March 22, 2016 (version 1)
  4. Version of Record published: April 5, 2016 (version 2)

Copyright

© 2016, Vijayvargia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,646
    views
  • 965
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ravi Vijayvargia
  2. Raquel Epand
  3. Alexander Leitner
  4. Tae-Yang Jung
  5. Baehyun Shin
  6. Roy Jung
  7. Alejandro Lloret
  8. Randy Singh Atwal
  9. Hyeongseok Lee
  10. Jong-Min Lee
  11. Ruedi Aebersold
  12. Hans Hebert
  13. Ji-Joon Song
  14. Ihn Sik Seong
(2016)
Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function
eLife 5:e11184.
https://doi.org/10.7554/eLife.11184

Share this article

https://doi.org/10.7554/eLife.11184

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.