Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function

  1. Ravi Vijayvargia
  2. Raquel Epand
  3. Alexander Leitner
  4. Tae-Yang Jung
  5. Baehyun Shin
  6. Roy Jung
  7. Alejandro Lloret
  8. Randy Singh Atwal
  9. Hyeongseok Lee
  10. Jong-Min Lee
  11. Ruedi Aebersold
  12. Hans Hebert
  13. Ji-Joon Song
  14. Ihn Sik Seong  Is a corresponding author
  1. The Maharaja Sayajirao University of Baroda, India
  2. McMaster University, Canada
  3. Eidgenössische Technische Hochschule Zürich, Switzerland
  4. Korea Advanced Institute of Science and Technology, Republic of Korea
  5. Massachusetts General Hospital, United States
  6. Universidad Autónoma de Querétaro, Mexico
  7. Karolinska Institute, Sweden

Abstract

The polyglutamine expansion in huntingtin protein causes Huntington's disease. Here, we investigated structural and biochemical properties of huntingtin and the effect of the polyglutamine expansion using various biophysical experiments including circular dichroism, single-particle electron microscopy and cross-linking mass spectrometry. Huntingtin is likely composed of five distinct domains and adopts a spherical α-helical solenoid where the amino-terminal and carboxyl-terminal regions fold to contain a circumscribed central cavity. Interestingly we showed that the polyglutamine expansion increases α-helical properties of huntingtin and affects the intramolecular interactions among the domains. Our work delineates the structural characteristics of full-length huntingtin, which are affected by the polyglutamine expansion, and provides an elegant solution to the apparent conundrum of how the extreme amino-terminal polyglutamine tract confers a novel property on huntingtin, causing the disease.

Article and author information

Author details

  1. Ravi Vijayvargia

    Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Raquel Epand

    Biochemical ad Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Leitner

    Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Tae-Yang Jung

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Baehyun Shin

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roy Jung

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alejandro Lloret

    Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Randy Singh Atwal

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hyeongseok Lee

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Jong-Min Lee

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Hans Hebert

    Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Ji-Joon Song

    Department of Biological Sciences, Cancer Metastasis Control Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. Ihn Sik Seong

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, United States
    For correspondence
    iseong@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Vijayvargia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,665
    views
  • 965
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ravi Vijayvargia
  2. Raquel Epand
  3. Alexander Leitner
  4. Tae-Yang Jung
  5. Baehyun Shin
  6. Roy Jung
  7. Alejandro Lloret
  8. Randy Singh Atwal
  9. Hyeongseok Lee
  10. Jong-Min Lee
  11. Ruedi Aebersold
  12. Hans Hebert
  13. Ji-Joon Song
  14. Ihn Sik Seong
(2016)
Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function
eLife 5:e11184.
https://doi.org/10.7554/eLife.11184

Share this article

https://doi.org/10.7554/eLife.11184

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.