Population genomics of intrapatient HIV-1 evolution

  1. Fabio Zanini
  2. Johanna Brodin
  3. Lina Thebo
  4. Christa Lanz
  5. Göran Bratt
  6. Jan Albert
  7. Richard A Neher  Is a corresponding author
  1. Max Planck Institute for Developmental Biology, Germany
  2. Karolinska Institute, Sweden
  3. Stockholm South General Hospital, Sweden
  4. Karolinska Institutet, Sweden

Abstract

Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity.

Article and author information

Author details

  1. Fabio Zanini

    Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  2. Johanna Brodin

    Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Lina Thebo

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  4. Christa Lanz

    Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  5. Göran Bratt

    Department of Clinical Science and Education, Stockholm South General Hospital, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  6. Jan Albert

    Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Richard A Neher

    Evolutionary Dynamics and Biophysics, Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    richard.neher@tuebingen.mpg.de
    Competing interests
    Richard A Neher, Reviewing editor, eLife.

Ethics

Human subjects: The study was carried out according to the Declaration of Helsinki. Ethical approval was granted by the Regional Ethical Review board in Stockholm, Sweden (Dnr 2012/505-31/12). Patients participating in the study gave written and oral informed consent to participate.

Copyright

© 2015, Zanini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,461
    views
  • 1,456
    downloads
  • 209
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabio Zanini
  2. Johanna Brodin
  3. Lina Thebo
  4. Christa Lanz
  5. Göran Bratt
  6. Jan Albert
  7. Richard A Neher
(2015)
Population genomics of intrapatient HIV-1 evolution
eLife 4:e11282.
https://doi.org/10.7554/eLife.11282

Share this article

https://doi.org/10.7554/eLife.11282

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.