Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas

  1. Andreas Zembrzycki  Is a corresponding author
  2. Adam M Stocker
  3. Axel Leingärtner
  4. Setsuko Sahara
  5. Shen-Ju Chou
  6. Valery Kalatsky
  7. Scott R May
  8. Michael P Stryker
  9. Dennis DM O'Leary
  1. The Salk Institute For Biological Studies, United States
  2. Minnesota State University Moorhead, United States
  3. University Medical Center, Germany
  4. King's College London, United Kingdom
  5. Academia Sinica, Taiwan
  6. Enthought Scientific Computing Solutions, United States
  7. University of California, San Francisco, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/11416/elife-11416-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Zembrzycki
  2. Adam M Stocker
  3. Axel Leingärtner
  4. Setsuko Sahara
  5. Shen-Ju Chou
  6. Valery Kalatsky
  7. Scott R May
  8. Michael P Stryker
  9. Dennis DM O'Leary
(2015)
Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas
eLife 4:e11416.
https://doi.org/10.7554/eLife.11416