Abstract

Generative models, such as predictive coding, posit that perception results from a combination of sensory input and prior prediction, each weighted by its precision (inverse variance), with incongruence between these termed prediction error (deviation from prediction) or surprise (negative log probability of the sensory input). However, direct evidence for such a system, and the physiological basis of its computations, is lacking. Using an auditory stimulus whose pitch value changed according to specific rules, we controlled and separated the three key computational variables underlying perception, and discovered, using direct recordings from human auditory cortex, that surprise due to prediction violations is encoded by local field potential oscillations in the gamma band (>30 Hz), changes to predictions in the beta band (12-30 Hz), and that the precision of predictions appears to quantitatively relate to alpha band oscillations (8-12 Hz). These results confirm oscillatory codes for critical aspects of generative models of perception.

Article and author information

Author details

  1. William Sedley

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    For correspondence
    willsedley@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Phillip E Gander

    Human Brain Research Laboratory, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sukhbinder Kumar

    Institute of Neuroscience, Newcastle University, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher K Kovach

    Human Brain Research Laboratory, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hiroyuki Oya

    Human Brain Research Laboratory, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiroto Kawasaki

    Human Brain Research Laboratory, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew A Howard

    Human Brain Research Laboratory, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Timothy D Griffiths

    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study was approved by the University of Iowa Institutional Review Board, and with full informed written consent from all participants.

Copyright

© 2016, Sedley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,716
    views
  • 1,018
    downloads
  • 147
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Sedley
  2. Phillip E Gander
  3. Sukhbinder Kumar
  4. Christopher K Kovach
  5. Hiroyuki Oya
  6. Hiroto Kawasaki
  7. Matthew A Howard
  8. Timothy D Griffiths
(2016)
Neural Signatures of Perceptual Inference
eLife 5:e11476.
https://doi.org/10.7554/eLife.11476

Share this article

https://doi.org/10.7554/eLife.11476

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.