Guanylate binding proteins (GBPs) directly attack T. gondii via supramolecular complexes

  1. Elisabeth Kravets
  2. Daniel Degrandi
  3. Qijun Ma
  4. Thomas-Otavio Peulen
  5. Verena Klümpers
  6. Suren Felekyan
  7. Ralf Kühnemuth
  8. Stefanie Weidtkamp-Peters
  9. Claus AM Seidel  Is a corresponding author
  10. Klaus Pfeffer
  1. Heinrich-Heine University Düsseldorf, Germany
  2. Heinrich-Heine-University Düsseldorf, Germany
  3. Heidelberg University, Germany

Abstract

GBPs are essential for immunity against intracellular pathogens, especially for T. gondii control. Here, the molecular interactions of murine GBPs (mGBP1/2/3/5/6), homo- and hetero-multimerization properties of mGBP2 and its function in parasite killing were investigated by mutational, Multiparameter Fluorescence Image Spectroscopy, and live cell microscopy methodologies. Control of T. gondii replication by mGBP2 requires GTP hydrolysis and isoprenylation thus, enabling reversible oligomerization in vesicle-like structures. mGBP2 undergoes structural transitions between monomeric, dimeric and oligomeric states visualized by quantitative FRET analysis. mGBPs reside in at least two discrete subcellular reservoirs and attack the parasitophorous vacuole membrane (PVM) as orchestrated, supramolecular complexes forming large, densely packed multimers comprising up to several thousand monomers. This dramatic mGBP enrichment results in the loss of PVM integrity, followed by a direct assault of mGBP2 upon the plasma membrane of the parasite. These discoveries provide vital dynamic and molecular perceptions into cell-autonomous immunity.

Article and author information

Author details

  1. Elisabeth Kravets

    Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Degrandi

    Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Qijun Ma

    Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas-Otavio Peulen

    Institute for Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Verena Klümpers

    Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Suren Felekyan

    Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf Kühnemuth

    Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefanie Weidtkamp-Peters

    Center of Advanced Imaging, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Claus AM Seidel

    Institute for Molecular Physical Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    For correspondence
    cseidel@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Klaus Pfeffer

    Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Kravets et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,490
    views
  • 755
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth Kravets
  2. Daniel Degrandi
  3. Qijun Ma
  4. Thomas-Otavio Peulen
  5. Verena Klümpers
  6. Suren Felekyan
  7. Ralf Kühnemuth
  8. Stefanie Weidtkamp-Peters
  9. Claus AM Seidel
  10. Klaus Pfeffer
(2016)
Guanylate binding proteins (GBPs) directly attack T. gondii via supramolecular complexes
eLife 5:e11479.
https://doi.org/10.7554/eLife.11479

Share this article

https://doi.org/10.7554/eLife.11479

Further reading

    1. Structural Biology and Molecular Biophysics
    Maxim Oleynikov, Samie R Jaffrey
    Research Article

    The functional effects of an RNA can arise from complex three-dimensional folds known as tertiary structures. However, predicting the tertiary structure of an RNA and whether an RNA adopts distinct tertiary conformations remains challenging. To address this, we developed BASH MaP, a single-molecule dimethyl sulfate (DMS) footprinting method and DAGGER, a computational pipeline, to identify alternative tertiary structures adopted by different molecules of RNA. BASH MaP utilizes potassium borohydride to reveal the chemical accessibility of the N7 position of guanosine, a key mediator of tertiary structures. We used BASH MaP to identify diverse conformational states and dynamics of RNA G-quadruplexes, an important RNA tertiary motif, in vitro and in cells. BASH MaP and DAGGER analysis of the fluorogenic aptamer Spinach reveals that it adopts alternative tertiary conformations which determine its fluorescence states. BASH MaP thus provides an approach for structural analysis of RNA by revealing previously undetectable tertiary structures.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Lingzhi Gao, Dian Chen, Yu Liu
    Research Article

    Riboswitches represent a class of non-coding RNA that possess the unique ability to specifically bind ligands and, in response, regulate gene expression. A recent report unveiled a type of riboswitch, known as the guanidine-IV riboswitch, which responds to guanidine levels to regulate downstream genetic transcription. However, the precise molecular mechanism through which the riboswitch senses its target ligand and undergoes conformational changes remain elusive. This gap in understanding has impeded the potential applications of this riboswitch. To bridge this knowledge gap, our study investigated the conformational dynamics of the guanidine-IV riboswitch RNA upon ligand binding. We employed single-molecule fluorescence resonance energy transfer (smFRET) to dissect the behaviors of the aptamer, terminator, and full-length riboswitch. Our findings indicated that the aptamer portion exhibited higher sensitivity to guanidine compared to the terminator and full-length constructs. Additionally, we utilized Position-specific Labelling of RNA (PLOR) combined with smFRET to observe, at the single-nucleotide and single-molecule level, the structural transitions experienced by the guanidine-IV riboswitch during transcription. Notably, we discovered that the influence of guanidine on the riboswitch RNA’s conformations was significantly reduced after the transcription of 88 nucleotides. Furthermore, we proposed a folding model for the guanidine-IV riboswitch in the absence and presence of guanidine, thereby providing insights into its ligand-response mechanism.