Abstract

Alternative splicing (AS) can critically affect gene function and disease, yet mapping splicing variations remains a challenge. Here, we propose a new approach to define and quantify mRNA splicing in units of local splicing variations (LSVs). LSVs capture previously defined types of alternative splicing as well as more complex transcript variations. Building the first genome wide map of LSVs from twelve mouse tissues, we find complex LSVs constitute over 30% of tissue dependent transcript variations and affect specific protein families. We show the prevalence of complex LSVs is conserved in humans and identify hundreds of LSVs that are specific to brain subregions or altered in Alzheimer's patients. Amongst those are novel isoforms in the Camk2 family and a novel poison exon in Ptbp1, a key splice factor in neurogenesis. We anticipate the approach presented here will advance the ability to relate tissue-specific splice variation to genetic variation, phenotype, and disease.

Article and author information

Author details

  1. Jorge Vaquero-Garcia

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alejandro Barrera

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew R Gazzara

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan González-Vallinas

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicholas F Lahens

    Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John B Hogenesch

    Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristen W Lynch

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yoseph Barash

    Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    yosephb@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Juan Valcárcel, Centre de Regulació Genòmica (CRG), Barcelona, Spain

Version history

  1. Received: September 21, 2015
  2. Accepted: January 31, 2016
  3. Accepted Manuscript published: February 1, 2016 (version 1)
  4. Version of Record published: March 9, 2016 (version 2)

Copyright

© 2016, Vaquero-Garcia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,113
    Page views
  • 2,711
    Downloads
  • 230
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jorge Vaquero-Garcia
  2. Alejandro Barrera
  3. Matthew R Gazzara
  4. Juan González-Vallinas
  5. Nicholas F Lahens
  6. John B Hogenesch
  7. Kristen W Lynch
  8. Yoseph Barash
(2016)
A new view of transcriptome complexity and regulation through the lens of local splicing variations
eLife 5:e11752.
https://doi.org/10.7554/eLife.11752

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Breanne Sparta, Nont Kosaisawe ... John G Albeck
    Research Article Updated

    mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Matthew T Parker, Sebastian M Fica ... Gordon Grant Simpson
    Research Article

    Eukaryotic genes are interrupted by introns that are removed from transcribed RNAs by splicing. Patterns of splicing complexity differ between species, but it is unclear how these differences arise. We used inter-species association mapping with Saccharomycotina species to correlate splicing signal phenotypes with the presence or absence of splicing factors. Here we show that variation in 5' splice site sequence preferences correlate with the presence of the U6 snRNA N6-methyladenosine methyltransferase METTL16 and the splicing factor SNRNP27K. The greatest variation in 5' splice site sequence occurred at the +4 position and involved a preference switch between adenosine and uridine. Loss of METTL16 and SNRNP27K orthologs, or a single SNRNP27K methionine residue, was associated with a preference for +4U. These findings are consistent with splicing analyses of mutants defective in either METTL16 or SNRNP27K orthologs and models derived from spliceosome structures, demonstrating that inter-species association mapping is a powerful orthogonal approach to molecular studies. We identified variation between species in the occurrence of two major classes of 5' splice sites, defined by distinct interaction potentials with U5 and U6 snRNAs, that correlates with intron number. We conclude that variation in concerted processes of 5' splice site selection by U6 snRNA is associated with evolutionary changes in splicing signal phenotypes.