Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4

Abstract

Cardiac repolarization is determined in part by the slow delayed rectifier current (IKs), through the tetrameric voltage-gated ion channel, KCNQ1, and its β-subunit, KCNE1. The stoichiometry between α and β-subunits has been controversial with studies reporting either a strict 2 KCNE1:4 KCNQ1 or a variable ratio up to 4:4. We used IKs fusion proteins linking KCNE1 to one (EQ), two (EQQ) or four (EQQQQ) KCNQ1 subunits, to reproduce compulsory 4:4, 2:4 or 1:4 stoichiometries. Whole cell and single-channel recordings showed EQQ and EQQQQ to have increasingly hyperpolarized activation, reduced conductance, and shorter first latency of opening compared to EQ - all abolished by the addition of KCNE1. As well, using a UV-crosslinking unnatural amino acid in KCNE1, we found EQQQQ and EQQ crosslinking rates to be progressively slowed compared to KCNQ1, which demonstrates that no intrinsic mechanism limits the association of up to four β-subunits within the IKs complex.

Article and author information

Author details

  1. Christopher I Murray

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Maartje Westhoff

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jodene Eldstrom

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Emely Thompson

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Emes

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. David Fedida

    Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
    For correspondence
    david.fedida@ubc.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Version history

  1. Received: September 24, 2015
  2. Accepted: January 22, 2016
  3. Accepted Manuscript published: January 23, 2016 (version 1)
  4. Version of Record published: February 17, 2016 (version 2)

Copyright

© 2016, Murray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,403
    views
  • 545
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher I Murray
  2. Maartje Westhoff
  3. Jodene Eldstrom
  4. Emely Thompson
  5. Robert Emes
  6. David Fedida
(2016)
Unnatural amino acid photo-crosslinking of the IKs channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4
eLife 5:e11815.
https://doi.org/10.7554/eLife.11815

Share this article

https://doi.org/10.7554/eLife.11815

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.