1. Cell Biology
  2. Chromosomes and Gene Expression
Download icon

The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis

  1. Saravanapriah Nadarajan
  2. Firaz Mohideen
  3. Yonatan B Tzur
  4. Nuria Ferrandiz
  5. Oliver Crawley
  6. Alex Montoya
  7. Peter Faull
  8. Ambrosius P Snijders
  9. Pedro R Cutillas
  10. Ashwini Jambhekar
  11. Michael D Blower
  12. Enrique Martinez-Perez
  13. J Wade Harper
  14. Monica P Colaiacovo  Is a corresponding author
  1. Harvard Medical School, United States
  2. Hebrew University of Jerusalem, Israel
  3. Imperial College London, United Kingdom
  4. London Research Institute, United Kingdom
  5. Barts Cancer Institute, United Kingdom
Research Article
  • Cited 13
  • Views 2,142
  • Annotations
Cite this article as: eLife 2016;5:e12039 doi: 10.7554/eLife.12039

Abstract

Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.

Article and author information

Author details

  1. Saravanapriah Nadarajan

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Firaz Mohideen

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yonatan B Tzur

    Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Nuria Ferrandiz

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver Crawley

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Montoya

    Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Faull

    Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ambrosius P Snijders

    London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro R Cutillas

    Barts Cancer Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Ashwini Jambhekar

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael D Blower

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Enrique Martinez-Perez

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. J Wade Harper

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Monica P Colaiacovo

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    mcolaiacovo@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Publication history

  1. Received: October 2, 2015
  2. Accepted: February 26, 2016
  3. Accepted Manuscript published: February 27, 2016 (version 1)
  4. Version of Record published: March 14, 2016 (version 2)

Copyright

© 2016, Nadarajan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,142
    Page views
  • 563
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Haining Zhong et al.
    Tools and Resources Updated

    Precise and efficient insertion of large DNA fragments into somatic cells using gene editing technologies to label or modify endogenous proteins remains challenging. Non-specific insertions/deletions (INDELs) resulting from the non-homologous end joining pathway make the process error-prone. Further, the insert is not readily removable. Here, we describe a method called CRISPR-mediated insertion of exon (CRISPIE) that can precisely and reversibly label endogenous proteins using CRISPR/Cas9-based editing. CRISPIE inserts a designer donor module, which consists of an exon encoding the protein sequence flanked by intron sequences, into an intronic location in the target gene. INDELs at the insertion junction will be spliced out, leaving mRNAs nearly error-free. We used CRISPIE to fluorescently label endogenous proteins in mammalian neurons in vivo with previously unachieved efficiency. We demonstrate that this method is broadly applicable, and that the insert can be readily removed later. CRISPIE permits protein sequence insertion with high fidelity, efficiency, and flexibility.

    1. Cell Biology
    2. Developmental Biology
    Maria Danielle Sallee et al.
    Research Article

    Sustained polarity and adhesion of epithelial cells is essential for the protection of our organs and bodies, and this epithelial integrity emerges during organ development amidst numerous programmed morphogenetic assaults. Using the developing C. elegans intestine as an in vivo model, we investigated how epithelia maintain their integrity through cell division and elongation to build a functional tube. Live-imaging revealed that apical PAR complex proteins PAR-6/Par6 and PKC-3/aPkc remained apical during mitosis while apical microtubules and microtubule-organizing center (MTOC) proteins were transiently removed. Intestine-specific depletion of PAR-6, PKC-3, and the aPkc regulator CDC-42/Cdc42 caused persistent gaps in the apical MTOC as well as in other apical and junctional proteins after cell division and in non-dividing cells that elongated. Upon hatching, gaps coincided with luminal constrictions that blocked food, and larvae arrested and died. Thus, the apical PAR complex maintains apical and junctional continuity to construct a functional intestinal tube.