The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis

  1. Saravanapriah Nadarajan
  2. Firaz Mohideen
  3. Yonatan B Tzur
  4. Nuria Ferrandiz
  5. Oliver Crawley
  6. Alex Montoya
  7. Peter Faull
  8. Ambrosius P Snijders
  9. Pedro R Cutillas
  10. Ashwini Jambhekar
  11. Michael D Blower
  12. Enrique Martinez-Perez
  13. J Wade Harper
  14. Monica P Colaiacovo  Is a corresponding author
  1. Harvard Medical School, United States
  2. Hebrew University of Jerusalem, Israel
  3. Imperial College London, United Kingdom
  4. London Research Institute, United Kingdom
  5. Barts Cancer Institute, United Kingdom

Abstract

Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation.

Article and author information

Author details

  1. Saravanapriah Nadarajan

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Firaz Mohideen

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yonatan B Tzur

    Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Nuria Ferrandiz

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver Crawley

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Montoya

    Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Faull

    Proteomics facility, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ambrosius P Snijders

    London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro R Cutillas

    Barts Cancer Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Ashwini Jambhekar

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael D Blower

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Enrique Martinez-Perez

    MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. J Wade Harper

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Monica P Colaiacovo

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    mcolaiacovo@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Nadarajan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,522
    views
  • 610
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saravanapriah Nadarajan
  2. Firaz Mohideen
  3. Yonatan B Tzur
  4. Nuria Ferrandiz
  5. Oliver Crawley
  6. Alex Montoya
  7. Peter Faull
  8. Ambrosius P Snijders
  9. Pedro R Cutillas
  10. Ashwini Jambhekar
  11. Michael D Blower
  12. Enrique Martinez-Perez
  13. J Wade Harper
  14. Monica P Colaiacovo
(2016)
The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis
eLife 5:e12039.
https://doi.org/10.7554/eLife.12039

Share this article

https://doi.org/10.7554/eLife.12039

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.