Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection

  1. Feiran Lu
  2. Qiren Liang
  3. Lina Abi-Mosleh
  4. Akash Das
  5. Jef K De Brabander
  6. Joseph L Goldstein  Is a corresponding author
  7. Michael S Brown
  1. University of Texas Southwestern Medical Center, United States
  2. The University of Texas Southwestern Medical Center, United States

Abstract

Niemann-Pick C1 (NPC1) is a lysosomal membrane protein that exports cholesterol derived from receptor-mediated uptake of LDL, and it also mediates cellular entry of Ebola virus. Cholesterol export is inhibited by nanomolar concentrations of U18666A, a cationic sterol. To identify the target of U18666A, we synthesized U-X, a U18666A derivative with a benzophenone that permits ultraviolet-induced crosslinking. When added to CHO cells, U-X crosslinked to NPC1. Crosslinking was blocked by U18666A derivatives that block cholesterol export, but not derivatives lacking blocking activity. Crosslinking was prevented by point mutation in the sterol-sensing domain (SSD) of NPC1, but not by point mutation in the N-terminal domain (NTD). These data suggest that the SSD contains a U18666A-inhibitable site required for cholesterol export distinct from the cholesterol-binding site in the NTD. Inasmuch as inhibition of Ebola requires 100-fold higher concentrations of U18666A, the high affinity U16888A-binding site is likely not required for virus entry.

Article and author information

Author details

  1. Feiran Lu

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiren Liang

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lina Abi-Mosleh

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Akash Das

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jef K De Brabander

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph L Goldstein

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    joe.goldstein@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael S Brown

    Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,219
    views
  • 1,842
    downloads
  • 259
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Feiran Lu
  2. Qiren Liang
  3. Lina Abi-Mosleh
  4. Akash Das
  5. Jef K De Brabander
  6. Joseph L Goldstein
  7. Michael S Brown
(2015)
Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection
eLife 4:e12177.
https://doi.org/10.7554/eLife.12177

Share this article

https://doi.org/10.7554/eLife.12177

Further reading

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.