A common mechanism underlies changes of mind about decisions and confidence

  1. Ronald van den Berg
  2. Kavi Anandalingam
  3. Ariel Zylberberg
  4. Roozbeh Kiani
  5. Michael N Shadlen
  6. Daniel M Wolpert  Is a corresponding author
  1. Cambridge University, United Kingdom
  2. Columbia University, United States
  3. New York University, United States

Abstract

Decisions are accompanied by a degree of confidence that a selected option is correct. A sequential sampling framework explains the speed and accuracy of decisions and extends naturally to the confidence that the decision rendered is likely to be correct. However, discrepancies between confidence and accuracy suggest that confidence might be supported by mechanisms dissociated from the decision process. Here we show that this discrepancy can arise naturally because of simple processing delays. When participants were asked to report choice and confidence simultaneously, their confidence, reaction time and a perceptual decision about motion were explained by bounded evidence accumulation. However, we also observed revisions of the initial choice and/or confidence. These changes of mind were explained by a continuation of the mechanism that led to the initial choice. Our findings extend the sequential sampling framework to vacillation about confidence and invites caution in interpreting dissociations between confidence and accuracy.

Article and author information

Author details

  1. Ronald van den Berg

    Computational and Biological Learning Laboratory, Department of Engineering, Cambridge University, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Kavi Anandalingam

    Computational and Biological Learning Laboratory, Department of Engineering, Cambridge University, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Zylberberg

    Kavli Institute, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roozbeh Kiani

    Center for Neural Science, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael N Shadlen

    Kavli Institute, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel M Wolpert

    Computational and Biological Learning Lab, Department of Engineering, Cambridge University, Cambridge, United Kingdom
    For correspondence
    wolpert@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The Cambridge Psychology Research Ethics Committee approved the experimental protocol, and subjects gave written informed consent.

Copyright

© 2016, van den Berg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,304
    views
  • 1,464
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ronald van den Berg
  2. Kavi Anandalingam
  3. Ariel Zylberberg
  4. Roozbeh Kiani
  5. Michael N Shadlen
  6. Daniel M Wolpert
(2016)
A common mechanism underlies changes of mind about decisions and confidence
eLife 5:e12192.
https://doi.org/10.7554/eLife.12192

Share this article

https://doi.org/10.7554/eLife.12192

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.