Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

  1. Sandra Kümper  Is a corresponding author
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
  1. Institute of Cancer Research, United Kingdom
  2. Cancer Research UK London Research Institute, United Kingdom
  3. Cancer Research UK Manchester Institute, United Kingdom

Abstract

Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

Article and author information

Author details

  1. Sandra Kümper

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    For correspondence
    sandra.kuemper@icr.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Faraz K Mardakheh

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Afshan McCarthy

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maggie Yeo

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gordon W Stamp

    Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Angela Paul

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan Worboys

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Amine Sadok

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Claus Jørgensen

    Cancer Research UK Manchester Institute, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Sabrina Guichard

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher J Marshall

    Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roger Davis, Howard Hughes Medical Institute & University of Massachusetts Medical School, United States

Ethics

Animal experimentation: All animal procedures were approved by the Animal Ethics Committee of the Institute of Cancer Research in accordance with National Home Office regulations under the Animals (Scientific Procedures) Act 1986. The date of approval of the current project license under which this work was carried out was the 07/09/13.

Version history

  1. Received: October 9, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: March 7, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 7,769
    views
  • 1,687
    downloads
  • 117
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra Kümper
  2. Faraz K Mardakheh
  3. Afshan McCarthy
  4. Maggie Yeo
  5. Gordon W Stamp
  6. Angela Paul
  7. Jonathan Worboys
  8. Amine Sadok
  9. Claus Jørgensen
  10. Sabrina Guichard
  11. Christopher J Marshall
(2016)
Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis
eLife 5:e12203.
https://doi.org/10.7554/eLife.12203

Share this article

https://doi.org/10.7554/eLife.12203

Further reading

    1. Cancer Biology
    Célia Guérin, David Tulasne
    Review Article

    Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.