Abstract

The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53's control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis.

Article and author information

Author details

  1. Seung-Hyun Ro

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiang Xue

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sadeesh K Ramakrishnan

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chun-Seok Cho

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sim Namkoong

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Insook Jang

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian A Semple

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Allison Ho

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hwan-Woo Park

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yatrik M Shah

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun Hee Lee

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    leeju@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were ethically approved (protocol approval numbers: PRO00005712 and PRO00004019) and overseen by the University Committee on Use and Care of Animals (UCUCA) at the University of Michigan.

Copyright

© 2016, Ro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,593
    views
  • 598
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.12204

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yan Zhang, Hua Zhang
    Insight

    Long thought to have little relevance to ovarian physiology, the rete ovarii may have a role in follicular dynamics and reproductive health.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.