Dbx1 precursor cells are a source of inspiratory XII premotoneurons

  1. Ann L Revill
  2. Nikolas C Vann
  3. Victoria T Akins
  4. Andrew Kottick
  5. Paul A Gray
  6. Christopher A Del Negro
  7. Gregory D Funk  Is a corresponding author
  1. University of Alberta, Canada
  2. The College of William and Mary, United States
  3. Washington University School of Medicine, United States

Abstract

All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of mammalian motoneurons remain unknown. Recently we established in vitro that Dbx1-derived preBötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency. Laser ablation of Dbx1 IRt neurons, 57% of which are glutamatergic, decreased ipsilateral inspiratory motor output without affecting frequency. We conclude that a subset of Dbx1 IRt neurons is a source of premotor excitatory drive, contributing to the inspiratory behavior of XII motoneurons, as well as a key component of the airway control network whose dysfunction contributes to sleep apnea.

Article and author information

Author details

  1. Ann L Revill

    Departments of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikolas C Vann

    Department of Applied Science, The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victoria T Akins

    Department of Applied Science, The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Kottick

    Department of Applied Science, The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paul A Gray

    Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher A Del Negro

    Department of Applied Science, The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory D Funk

    Departments of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
    For correspondence
    gf@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institutet, Sweden

Ethics

Animal experimentation: Ethics Statement: All experiments were performed in accordance with guidelines laid down by the NIH in the US regarding the care and use of animals for experimental procedures, the Institute for Laboratory Animal Research, and in compliance with protocols approved by the College of William & Mary Institutional Animal Care and Use Committee (protocol #8828), the Animal Studies Committee at Washington University School of Medicine (protocol #20110249) and the University of Alberta of Medicine Animal Welfare Committee (protocol #255).

Version history

  1. Received: October 14, 2015
  2. Accepted: December 18, 2015
  3. Accepted Manuscript published: December 19, 2015 (version 1)
  4. Version of Record published: February 14, 2016 (version 2)

Copyright

© 2015, Revill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,066
    views
  • 285
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ann L Revill
  2. Nikolas C Vann
  3. Victoria T Akins
  4. Andrew Kottick
  5. Paul A Gray
  6. Christopher A Del Negro
  7. Gregory D Funk
(2015)
Dbx1 precursor cells are a source of inspiratory XII premotoneurons
eLife 4:e12301.
https://doi.org/10.7554/eLife.12301

Share this article

https://doi.org/10.7554/eLife.12301

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.