Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in C. elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state.

Article and author information

Author details

  1. Michal Turek

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Judith Besseling

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan-Philipp Spies

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabine König

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Henrik Bringmann

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    For correspondence
    henrik.bringmann@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Turek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,759
    views
  • 736
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann
(2016)
Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep
eLife 5:e12499.
https://doi.org/10.7554/eLife.12499

Share this article

https://doi.org/10.7554/eLife.12499

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.