Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany

Abstract

Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in C. elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state.

Article and author information

Author details

  1. Michal Turek

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Judith Besseling

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan-Philipp Spies

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabine König

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Henrik Bringmann

    Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
    For correspondence
    henrik.bringmann@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Turek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,785
    views
  • 737
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Turek
  2. Judith Besseling
  3. Jan-Philipp Spies
  4. Sabine König
  5. Henrik Bringmann
(2016)
Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep
eLife 5:e12499.
https://doi.org/10.7554/eLife.12499

Share this article

https://doi.org/10.7554/eLife.12499

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.