Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

  1. Curtis McMurtrey
  2. Thomas Trolle
  3. Tiffany Sansom
  4. Soumya G Remesh
  5. Thomas Kaever
  6. Wilfried Bardet
  7. Kenneth Jackson
  8. Morten Nielsen
  9. Rima McLeod
  10. Dirk M Zajonc
  11. Ira J Blader
  12. Bjoern Peters
  13. Alessandro Sette
  14. William Hildebrand  Is a corresponding author
  1. University of Oklahoma Health Sciences Center, United States
  2. Technical University of Denmark, Denmark
  3. University at Buffalo School of Medicine, United States
  4. La Jolla Institute for Allergy and Immunology, United States
  5. University of Chicago, United States
  6. University of Oklahoma Health Science Center, United States

Abstract

HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1-30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F' pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions.

Article and author information

Author details

  1. Curtis McMurtrey

    Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Trolle

    Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Tiffany Sansom

    Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Soumya G Remesh

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Kaever

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Wilfried Bardet

    Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth Jackson

    Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Morten Nielsen

    Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Rima McLeod

    University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk M Zajonc

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ira J Blader

    Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bjoern Peters

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alessandro Sette

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Hildebrand

    Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, United States
    For correspondence
    william-hildebrand@ouhsc.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, McMurtrey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Curtis McMurtrey
  2. Thomas Trolle
  3. Tiffany Sansom
  4. Soumya G Remesh
  5. Thomas Kaever
  6. Wilfried Bardet
  7. Kenneth Jackson
  8. Morten Nielsen
  9. Rima McLeod
  10. Dirk M Zajonc
  11. Ira J Blader
  12. Bjoern Peters
  13. Alessandro Sette
  14. William Hildebrand
(2016)
Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove
eLife 5:e12556.
https://doi.org/10.7554/eLife.12556

Share this article

https://doi.org/10.7554/eLife.12556

Further reading

    1. Immunology and Inflammation
    Graham L Barlow, Christian M Schürch ... Paul L Bollyky
    Research Article

    In autoimmune type 1 diabetes (T1D), immune cells infiltrate and destroy the islets of Langerhans — islands of endocrine tissue dispersed throughout the pancreas. However, the contribution of cellular programs outside islets to insulitis is unclear. Here, using CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas samples, we simultaneously examine islet and extra-islet inflammation in human T1D. We identify four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. We further find that the extra-islet space of lobules with extensive islet-infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. Finally, we identify lymphoid structures away from islets enriched in CD45RA+ T cells — a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

    1. Immunology and Inflammation
    Eugenio Antonio Carrera Silva, Juliana Puyssegur, Andrea Emilse Errasti
    Review Article

    The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.