1. Computational and Systems Biology
  2. Neuroscience
Download icon

A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

  1. William M Roberts
  2. Steven B Augustine
  3. Kristy J Lawton
  4. Theodore H Lindsay
  5. Tod R Thiele
  6. Eduardo J Izquierdo
  7. Serge Faumont
  8. Rebecca A Lindsay
  9. Matthew Cale Britton
  10. Navin Pokala
  11. Cornelia I Bargmann
  12. Shawn R Lockery  Is a corresponding author
  1. University of Oregon, United States
  2. University of Pennsylvania, United States
  3. Reed College, United States
  4. California Institute of Technology, United States
  5. University of Toronto, Canada
  6. Indiana University, United States
  7. Children's Hospital Los Angeles, United States
  8. University of Minnesota, United States
  9. New York Institiute of Technology, United States
  10. Howard Hughes Medical Institute, Rockefeller University, United States
Research Article
  • Cited 49
  • Views 5,249
  • Annotations
Cite this article as: eLife 2016;5:e12572 doi: 10.7554/eLife.12572

Abstract

Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.

Article and author information

Author details

  1. William M Roberts

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven B Augustine

    School of Nursing, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristy J Lawton

    Biology Department, Reed College, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Theodore H Lindsay

    Division of biology and biological engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tod R Thiele

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Eduardo J Izquierdo

    Cognitive Science Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Serge Faumont

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca A Lindsay

    Department of Ophthalmology, The Vision Center, Children's Hospital Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew Cale Britton

    Department of Neurology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Navin Pokala

    Department of Life Sciences, New York Institiute of Technology, Old Westbury, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cornelia I Bargmann

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shawn R Lockery

    Institute of Neuroscience, University of Oregon, Eugene, United States
    For correspondence
    shawn@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: October 26, 2015
  2. Accepted: January 19, 2016
  3. Accepted Manuscript published: January 29, 2016 (version 1)
  4. Version of Record published: March 8, 2016 (version 2)
  5. Version of Record updated: October 11, 2018 (version 3)

Copyright

© 2016, Roberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,249
    Page views
  • 1,213
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Michael S Lauer, Deepshikha Roychowdhury
    Research Article Updated

    Previous reports have described worsening inequalities of National Institutes of Health (NIH) funding. We analyzed Research Project Grant data through the end of Fiscal Year 2020, confirming worsening inequalities beginning at the time of the NIH budget doubling (1998–2003), while finding that trends in recent years have reversed for both investigators and institutions, but only to a modest degree. We also find that career-stage trends have stabilized, with equivalent proportions of early-, mid-, and late-career investigators funded from 2017 to 2020. The fraction of women among funded PIs continues to increase, but they are still not at parity. Analyses of funding inequalities show that inequalities for investigators, and to a lesser degree for institutions, have consistently been greater within groups (i.e. within groups by career stage, gender, race, and degree) than between groups.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.