A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans

  1. William M Roberts
  2. Steven B Augustine
  3. Kristy J Lawton
  4. Theodore H Lindsay
  5. Tod R Thiele
  6. Eduardo J Izquierdo
  7. Serge Faumont
  8. Rebecca A Lindsay
  9. Matthew Cale Britton
  10. Navin Pokala
  11. Cornelia I Bargmann
  12. Shawn R Lockery  Is a corresponding author
  1. University of Oregon, United States
  2. University of Pennsylvania, United States
  3. Reed College, United States
  4. California Institute of Technology, United States
  5. University of Toronto, Canada
  6. Indiana University, United States
  7. Children's Hospital Los Angeles, United States
  8. University of Minnesota, United States
  9. New York Institiute of Technology, United States
  10. Howard Hughes Medical Institute, Rockefeller University, United States

Abstract

Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms.

Article and author information

Author details

  1. William M Roberts

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven B Augustine

    School of Nursing, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristy J Lawton

    Biology Department, Reed College, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Theodore H Lindsay

    Division of biology and biological engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tod R Thiele

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Eduardo J Izquierdo

    Cognitive Science Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Serge Faumont

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Rebecca A Lindsay

    Department of Ophthalmology, The Vision Center, Children's Hospital Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew Cale Britton

    Department of Neurology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Navin Pokala

    Department of Life Sciences, New York Institiute of Technology, Old Westbury, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cornelia I Bargmann

    Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shawn R Lockery

    Institute of Neuroscience, University of Oregon, Eugene, United States
    For correspondence
    shawn@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Roberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,321
    views
  • 1,331
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William M Roberts
  2. Steven B Augustine
  3. Kristy J Lawton
  4. Theodore H Lindsay
  5. Tod R Thiele
  6. Eduardo J Izquierdo
  7. Serge Faumont
  8. Rebecca A Lindsay
  9. Matthew Cale Britton
  10. Navin Pokala
  11. Cornelia I Bargmann
  12. Shawn R Lockery
(2016)
A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans
eLife 5:e12572.
https://doi.org/10.7554/eLife.12572

Share this article

https://doi.org/10.7554/eLife.12572

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Gabriel Loewinger, Erjia Cui ... Francisco Pereira
    Tools and Resources

    Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense within-trial signals into summary measures, and discard trial-level information by averaging across-trials. We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at every trial time-point, and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences. Our framework produces a series of plots that illustrate covariate effect estimates and statistical significance at each trial time-point. By exploiting signal autocorrelation, our methodology yields joint 95% confidence intervals that account for inspecting effects across the entire trial and improve the detection of event-related signal changes over common multiple comparisons correction strategies. We reanalyze data from a recent study proposing a theory for the role of mesolimbic dopamine in reward learning, and show the capability of our framework to reveal significant effects obscured by standard analysis approaches. For example, our method identifies two dopamine components with distinct temporal dynamics in response to reward delivery. In simulation experiments, our methodology yields improved statistical power over common analysis approaches. Finally, we provide an open-source package and analysis guide for applying our framework.

    1. Computational and Systems Biology
    Veronika Koren, Simone Blanco Malerba ... Stefano Panzeri
    Research Article

    The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.