Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Heriot Watt University, United Kingdom
  3. University of Oxford, United Kingdom

Abstract

Previously, we demonstrated that frequencies of CpG and UpA dinucleotides profoundly influence the replication ability of echovirus 7 (Tulloch et al., 2014). Here, we show that that influenza A virus (IAV) with maximised frequencies of these dinucleotides in segment 5 showed comparable attenuation in cell culture compared to unmodified virus and a permuted control (CDLR). Attenuation was also manifested in vivo, with 10-100 fold reduced viral loads in lungs of mice infected with 200PFU of CpG-high and UpA-high mutants. However, both induced powerful inflammatory cytokine and adaptive (T cell and neutralising antibody) responses disproportionate to their replication. CpG-high infected mice also showed markedly reduced clinical severity, minimal weight loss and reduced immmunopathology in lung, yet sterilising immunity to lethal dose WT challenge was achieved after low dose (20PFU) pre-immunisation with this mutant. Increasing CpG dinucleotide frequencies represents a generic and potentially highly effective method for generating safe, highly immunoreactive vaccines.

Article and author information

Author details

  1. Eleanor Gaunt

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen M Wise

    Department of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Huayu Zhang

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lian N Lee

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicky J Atkinson

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marlynne Quigg Nicol

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew J Highton

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Klenerman

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippa M Beard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Bernadette M Dutia

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Digard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Simmonds

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Peter.Simmonds@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were carried out under the authority of a UK Home Office Project Licence (60/4479) within the terms and conditions of the strict regulations of the UK Home Office 'Animals (scientific procedures) Act 1986' and the Code of Practice for the housing and care of animals bred, supplied or used for scientific purposes.

Copyright

© 2016, Gaunt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,323
    views
  • 669
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds
(2016)
Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection
eLife 5:e12735.
https://doi.org/10.7554/eLife.12735

Share this article

https://doi.org/10.7554/eLife.12735

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Gabriel Magno de Freitas Almeida, Iker Arriaga ... Lotta-Riina Sundberg
    Research Article

    Giant viruses of protists are a diverse and likely ubiquitous group of organisms. Here, we describe Jyvaskylavirus, the first giant virus isolated from Finland. This clade B marseillevirus was found in Acanthamoeba castellanii from a composting soil sample in Jyväskylä, Central Finland. Its genome shares similarities with other marseilleviruses. Helium ion microscopy and electron microscopy of infected cells unraveled stages of the Jyvaskylavirus life cycle. We reconstructed the Jyvaskylavirus particle to 6.3 Å resolution using cryo-electron microscopy. The ~2500 Å diameter virion displays structural similarities to other Marseilleviridae giant viruses. The capsid comprises of 9240 copies of the major capsid protein, encoded by open reading frame (ORF) 184, which possesses a double jellyroll fold arranged in trimers forming pseudo-hexameric capsomers. Below the capsid shell, the internal membrane vesicle encloses the genome. Through cross-structural and -sequence comparisons with other Marseilleviridae using AI-based software in model building and prediction, we elucidated ORF142 as the penton protein, which plugs the 12 vertices of the capsid. Five additional ORFs were identified, with models predicted and fitted into densities that either cap the capsomers externally or stabilize them internally. The isolation of Jyvaskylavirus suggests that these viruses may be widespread in the boreal environment and provide structural insights extendable to other marseilleviruses.

    1. Microbiology and Infectious Disease
    Dawid S Zyla
    Insight

    A combination of imaging techniques reveals how herpes simplex virus type 1 assembles within infected cells, highlighting the roles of essential viral proteins in viral assembly and exit.