Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Heriot Watt University, United Kingdom
  3. University of Oxford, United Kingdom

Abstract

Previously, we demonstrated that frequencies of CpG and UpA dinucleotides profoundly influence the replication ability of echovirus 7 (Tulloch et al., 2014). Here, we show that that influenza A virus (IAV) with maximised frequencies of these dinucleotides in segment 5 showed comparable attenuation in cell culture compared to unmodified virus and a permuted control (CDLR). Attenuation was also manifested in vivo, with 10-100 fold reduced viral loads in lungs of mice infected with 200PFU of CpG-high and UpA-high mutants. However, both induced powerful inflammatory cytokine and adaptive (T cell and neutralising antibody) responses disproportionate to their replication. CpG-high infected mice also showed markedly reduced clinical severity, minimal weight loss and reduced immmunopathology in lung, yet sterilising immunity to lethal dose WT challenge was achieved after low dose (20PFU) pre-immunisation with this mutant. Increasing CpG dinucleotide frequencies represents a generic and potentially highly effective method for generating safe, highly immunoreactive vaccines.

Article and author information

Author details

  1. Eleanor Gaunt

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen M Wise

    Department of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Huayu Zhang

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Lian N Lee

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicky J Atkinson

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marlynne Quigg Nicol

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrew J Highton

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul Klenerman

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippa M Beard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Bernadette M Dutia

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Digard

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Peter Simmonds

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Peter.Simmonds@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were carried out under the authority of a UK Home Office Project Licence (60/4479) within the terms and conditions of the strict regulations of the UK Home Office 'Animals (scientific procedures) Act 1986' and the Code of Practice for the housing and care of animals bred, supplied or used for scientific purposes.

Copyright

© 2016, Gaunt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,296
    views
  • 668
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleanor Gaunt
  2. Helen M Wise
  3. Huayu Zhang
  4. Lian N Lee
  5. Nicky J Atkinson
  6. Marlynne Quigg Nicol
  7. Andrew J Highton
  8. Paul Klenerman
  9. Philippa M Beard
  10. Bernadette M Dutia
  11. Paul Digard
  12. Peter Simmonds
(2016)
Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection
eLife 5:e12735.
https://doi.org/10.7554/eLife.12735

Share this article

https://doi.org/10.7554/eLife.12735

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.