Protein flexibility is required for vesicle tethering at the Golgi

  1. Pak-yan Patricia Cheung
  2. Charles Limouse
  3. Hideo Mabuchi
  4. Suzanne R Pfeffer  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Stanford University, United States

Abstract

The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185's ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185's N-and C-termini are within <40nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering.

Article and author information

Author details

  1. Pak-yan Patricia Cheung

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Charles Limouse

    Department of Applied Physics, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Hideo Mabuchi

    Department of Applied Physics, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Suzanne R Pfeffer

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    pfeffer@stanford.edu
    Competing interests
    Suzanne R Pfeffer, Reviewing editor, eLife.

Copyright

© 2015, Cheung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,551
    views
  • 586
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pak-yan Patricia Cheung
  2. Charles Limouse
  3. Hideo Mabuchi
  4. Suzanne R Pfeffer
(2015)
Protein flexibility is required for vesicle tethering at the Golgi
eLife 4:e12790.
https://doi.org/10.7554/eLife.12790

Share this article

https://doi.org/10.7554/eLife.12790

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.