The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF

  1. Christina Kiel  Is a corresponding author
  2. Hannah Benisty
  3. Veronica Lloréns-Rico
  4. Luis Serrano
  1. Centre for Genomic Regulation, Spain

Abstract

Many driver mutations in cancer are specific in that they occur at significantly higher rates than - presumably - functionally alternative mutations. For example, V600E in the BRAF hydrophobic activation segment (AS) pocket accounts for >95% of all kinase mutations. While many hypotheses tried to explain such significant mutation patterns, conclusive explanations are lacking. Here, we use experimental and in silico structure-energy statistical analyses, to elucidate why the V600E mutation, but no other mutation at this, or any other positions in BRAF's hydrophobic pocket, is predominant. We find that BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid. Using a random forest classifier, we quantitatively dissected the parameters contributing to BRAF AS cancer frequencies. These findings can be applied to genome-wide association studies and prediction models.

Article and author information

Author details

  1. Christina Kiel

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    For correspondence
    christina.kiel@crg.eu
    Competing interests
    The authors declare that no competing interests exist.
  2. Hannah Benisty

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronica Lloréns-Rico

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Luis Serrano

    EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Kiel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,973
    views
  • 406
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina Kiel
  2. Hannah Benisty
  3. Veronica Lloréns-Rico
  4. Luis Serrano
(2016)
The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF
eLife 5:e12814.
https://doi.org/10.7554/eLife.12814

Share this article

https://doi.org/10.7554/eLife.12814

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.