Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability

Abstract

The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor Growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability.

Article and author information

Author details

  1. Jonathan O Nelson

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kristin A Moore

    Department of Biology and the Center for Cell and Genome Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex Chapin

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julie Hollien

    Department of Biology and the Center for Cell and Genome Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark M Metzstein

    Department of Human Genetics, University of Utah, Salt Lake City, United States
    For correspondence
    markm@genetics.utah.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Torben Heick Jensen, Aarhus University, Denmark

Version history

  1. Received: November 6, 2015
  2. Accepted: March 8, 2016
  3. Accepted Manuscript published: March 8, 2016 (version 1)
  4. Version of Record published: April 27, 2016 (version 2)

Copyright

© 2016, Nelson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,660
    Page views
  • 833
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan O Nelson
  2. Kristin A Moore
  3. Alex Chapin
  4. Julie Hollien
  5. Mark M Metzstein
(2016)
Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability
eLife 5:e12876.
https://doi.org/10.7554/eLife.12876

Share this article

https://doi.org/10.7554/eLife.12876

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.