The human Ska complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores

  1. Sushama Sivakumar
  2. Paweł Ł Janczyk
  3. Qianhui Qu
  4. Chad A Brautigam
  5. P Todd Stukenberg
  6. Hongtao Yu
  7. Gary J Gorbsky  Is a corresponding author
  1. Oklahoma Medical Research Foundation, United States
  2. University of Virginia School of Medicine, United States
  3. Howard Hughes Medical Institute, University of Texas Southwestern Medical center, United States
  4. University of Texas Southwestern Medical center, United States

Abstract

The spindle- and kinetochore-associated (Ska) complex is essential for normal anaphase onset in mitosis. The C-terminal domain (CTD) of Ska1 binds microtubules and was proposed to facilitate kinetochore movement on depolymerizing spindle microtubules. Here we show that Ska complex recruits protein phosphatase 1 (PP1) to kinetochores. This recruitment requires the Ska1 CTD, which binds PP1 in vitro and in human HeLa cells. Ska1 lacking its CTD fused to a PP1-binding peptide or fused directly to PP1 rescues mitotic defects caused by Ska1 depletion. Ska1 fusion to catalytically dead PP1 mutant does not rescue and shows dominant negative effects. Thus, the Ska complex, specifically the Ska1 CTD, recruits PP1 to kinetochores to oppose spindle checkpoint signaling kinases and promote anaphase onset. Microtubule binding by Ska, rather than acting in force production for chromosome movement, may instead serve to promote PP1 recruitment to kinetochores fully attached to spindle microtubules at metaphase.

Article and author information

Author details

  1. Sushama Sivakumar

    Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Paweł Ł Janczyk

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qianhui Qu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad A Brautigam

    Department of Biophysics, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. P Todd Stukenberg

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongtao Yu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary J Gorbsky

    Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    For correspondence
    GJG@omrf.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sue Biggins, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: November 7, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 16, 2016 (version 1)
  4. Accepted Manuscript updated: March 21, 2016 (version 2)
  5. Version of Record published: March 29, 2016 (version 3)

Copyright

© 2016, Sivakumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,995
    views
  • 751
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sushama Sivakumar
  2. Paweł Ł Janczyk
  3. Qianhui Qu
  4. Chad A Brautigam
  5. P Todd Stukenberg
  6. Hongtao Yu
  7. Gary J Gorbsky
(2016)
The human Ska complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores
eLife 5:e12902.
https://doi.org/10.7554/eLife.12902

Share this article

https://doi.org/10.7554/eLife.12902

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.