The human Ska complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores

  1. Sushama Sivakumar
  2. Paweł Ł Janczyk
  3. Qianhui Qu
  4. Chad A Brautigam
  5. P Todd Stukenberg
  6. Hongtao Yu
  7. Gary J Gorbsky  Is a corresponding author
  1. Oklahoma Medical Research Foundation, United States
  2. University of Virginia School of Medicine, United States
  3. Howard Hughes Medical Institute, University of Texas Southwestern Medical center, United States
  4. University of Texas Southwestern Medical center, United States

Abstract

The spindle- and kinetochore-associated (Ska) complex is essential for normal anaphase onset in mitosis. The C-terminal domain (CTD) of Ska1 binds microtubules and was proposed to facilitate kinetochore movement on depolymerizing spindle microtubules. Here we show that Ska complex recruits protein phosphatase 1 (PP1) to kinetochores. This recruitment requires the Ska1 CTD, which binds PP1 in vitro and in human HeLa cells. Ska1 lacking its CTD fused to a PP1-binding peptide or fused directly to PP1 rescues mitotic defects caused by Ska1 depletion. Ska1 fusion to catalytically dead PP1 mutant does not rescue and shows dominant negative effects. Thus, the Ska complex, specifically the Ska1 CTD, recruits PP1 to kinetochores to oppose spindle checkpoint signaling kinases and promote anaphase onset. Microtubule binding by Ska, rather than acting in force production for chromosome movement, may instead serve to promote PP1 recruitment to kinetochores fully attached to spindle microtubules at metaphase.

Article and author information

Author details

  1. Sushama Sivakumar

    Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Paweł Ł Janczyk

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qianhui Qu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad A Brautigam

    Department of Biophysics, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. P Todd Stukenberg

    Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongtao Yu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary J Gorbsky

    Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    For correspondence
    GJG@omrf.org
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Sivakumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sushama Sivakumar
  2. Paweł Ł Janczyk
  3. Qianhui Qu
  4. Chad A Brautigam
  5. P Todd Stukenberg
  6. Hongtao Yu
  7. Gary J Gorbsky
(2016)
The human Ska complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores
eLife 5:e12902.
https://doi.org/10.7554/eLife.12902

Share this article

https://doi.org/10.7554/eLife.12902

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.